Math, asked by Anonymous, 1 year ago

heyyy dude
be cool
solve it fast
exams on head


follow me
no conversation
busy in study

Attachments:

Answers

Answered by Mankuthemonkey01
11
Given


 {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2 \\

To find,
x +  \frac{1}{x}  \\


Solution :-


 {x}^{4}  +  \frac{1}{ {x}^{4} }  = 2

Add 2x²(1/x²) on both sides.

 {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 {x}^{2}  \times  \frac{1}{ {x}^{2} }  = 2 + 2 {x}^{2}  \times  \frac{1}{ {x}^{2} }

Now, x⁴ + 1/x⁴ + 2x²(1/x)² = (x² + 1/x²)²

 =  > ( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  = 2 + 2

(since, x² × 1/x² = 1)

=>
( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  = 4 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \sqrt{4}  \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2

Repeat the steps again

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \times  \frac{1}{x}  = 2 + 2x \times  \frac{1}{x}

=>
(x +  \frac{1}{x} ) {}^{2}  = 2 + 2 \\  \\  =  > (x +  \frac{1}{x} ) {}^{2}  = 4 \\  \\  =  > x +  \frac{1}{x}  =  \sqrt{4}  \\  \\  =  > x +  \frac{1}{x}  = 2


Answer :- 2

Mankuthemonkey01: Welcome
Similar questions