hi!!!!
ans . it and solve all questions
Attachments:
Answers
Answered by
4
(1)
On squaring both sides, we get
= > x^2 + 1/x^2 + 2 * x * 1/x = 5
= > x^2 + 1/x^2 + 2 = 5
= > x^2 + 1/x^2 = 5 - 2
= > x^2 + 1/x^2 = 3.
(2)
Given 9x^2 + 25y^2 = 181
= > (3x)^2 + (5y)^2 + 2(3x)(5y) - 2(3x)(5y) = 181
= > (3x)^2 + (5y)^2 + 30xy - 30xy = 181
= > (3x + 5y)^2 = 181 + 30xy
= > (3x + 5y)^2 = 181 + 30(-6)
= > (3x + 5y)^2 = 181 - 180
= > (3x + 5y)^2 = 1
= > (3x + 5y) = +1, - 1.
(3)
Given a + b = 12, ab = 32.
We know that a^2 + b^2 = (a + b)^2 - 2ab
= (12)^2 - 2(32)
= 144 - 64
= 80.
Therefore the value of a^2 + b^2 = 80.
(4)
Given 2x + 3y = 8 and xy = -3.
On squaring both sides, we get
= > (2x + 3y)^2 = (8)^2
= > 4x^2 + 9y^2 + 12xy = 64
= > 4x^2 + 9y^2 + 12(2) = 64
= > 4x^2 + 9y^2 + 24 = 64
= > 4x^2 + 9y^2 = 64 - 24
= > 4x^2 + 9y^2 = 40.
Hope this helps!
On squaring both sides, we get
= > x^2 + 1/x^2 + 2 * x * 1/x = 5
= > x^2 + 1/x^2 + 2 = 5
= > x^2 + 1/x^2 = 5 - 2
= > x^2 + 1/x^2 = 3.
(2)
Given 9x^2 + 25y^2 = 181
= > (3x)^2 + (5y)^2 + 2(3x)(5y) - 2(3x)(5y) = 181
= > (3x)^2 + (5y)^2 + 30xy - 30xy = 181
= > (3x + 5y)^2 = 181 + 30xy
= > (3x + 5y)^2 = 181 + 30(-6)
= > (3x + 5y)^2 = 181 - 180
= > (3x + 5y)^2 = 1
= > (3x + 5y) = +1, - 1.
(3)
Given a + b = 12, ab = 32.
We know that a^2 + b^2 = (a + b)^2 - 2ab
= (12)^2 - 2(32)
= 144 - 64
= 80.
Therefore the value of a^2 + b^2 = 80.
(4)
Given 2x + 3y = 8 and xy = -3.
On squaring both sides, we get
= > (2x + 3y)^2 = (8)^2
= > 4x^2 + 9y^2 + 12xy = 64
= > 4x^2 + 9y^2 + 12(2) = 64
= > 4x^2 + 9y^2 + 24 = 64
= > 4x^2 + 9y^2 = 64 - 24
= > 4x^2 + 9y^2 = 40.
Hope this helps!
siddhartharao77:
;-)
Answered by
0
Answer:
see.....siddhartrao solved your question.....and that's the perfect answer
Similar questions
Math,
7 months ago
Social Sciences,
7 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago