hi answer this
please
Attachments:
![](https://hi-static.z-dn.net/files/d96/c9e92a199cb596a9f5e586b041adf51f.jpg)
Answers
Answered by
4
¤¤¤¤¤¤Hope it will be helpful for u¤¤¤¤¤¤
Mark it as brainlist
Mark it as brainlist
Attachments:
![](https://hi-static.z-dn.net/files/d19/45514b4bd15039176bd1a449a983ed4c.jpg)
Answered by
2
taking L.H.S:-
√[(1-cosA)²/(1²-cos²A)],
√[(1-cosA)²/sin²A],
(1-cosA)/sinA,
1/sinA - cosA/sinA,
cosecA - cotA,
taking R.H.S:-
cosecA-cotA,
[(cosecA-cotA)(cosecA+cotA)]/(cosecA+cotA),
(coeec²A-cot²A)/(cosecA+cotA),
1/(cosecA+cotA),
multiply by sinA in numerator and denominator,
sinA/(1+cosA),
√[sin²A/(1+cosA)²],
√[(1-cos²A)/(1+cosA)²],
√[(1-cosA)/(1+cosA)]
√[(1-cosA)²/(1²-cos²A)],
√[(1-cosA)²/sin²A],
(1-cosA)/sinA,
1/sinA - cosA/sinA,
cosecA - cotA,
taking R.H.S:-
cosecA-cotA,
[(cosecA-cotA)(cosecA+cotA)]/(cosecA+cotA),
(coeec²A-cot²A)/(cosecA+cotA),
1/(cosecA+cotA),
multiply by sinA in numerator and denominator,
sinA/(1+cosA),
√[sin²A/(1+cosA)²],
√[(1-cos²A)/(1+cosA)²],
√[(1-cosA)/(1+cosA)]
Similar questions