Math, asked by alokpal47788, 1 year ago

Hi any one help me

If x=1/2 (√3+1) than the value of 4x^3+2x^2-8x+2

Answers

Answered by SaumilGupta3344
0
Solution of the question is given below in the image
Attachments:

alokpal47788: i can cot agree with u
Answered by DaAnonymous
0
Hey friend,
Here is the answer you were looking for:
x =  \frac{1}{2( \sqrt{3} + 1) }  \\  \\  =  \frac{1}{2 \sqrt{3}  + 2}  \times  \frac{2 \sqrt{3}  - 2}{2 \sqrt{3}  - 2}  \\  \\  =  \frac{2 \sqrt{3}  - 2}{ {(2 \sqrt{3}) }^{2} -  {(2)}^{2}  }  \\  \\  =  \frac{2 \sqrt{3}  - 2}{12 - 4}  \\  \\  =  \frac{2 \sqrt{3} - 2 }{8}  \\  \\  =  \frac{ \sqrt{3}  - 1}{4}  \\  \\  4 {x}^{3}  + 2 {x}^{2}  - 8x + 2 \\  \\  = 4 {(  \frac{ \sqrt{3}  - 1}{4} )}^{3}  + 2 {( \frac{ \sqrt{3} - 1 }{4} )}^{2}  - 8( \frac{ \sqrt{3}  - 1}{4} ) + 2 \\  \\  = 4( \frac{ \sqrt{3} }{4}  -  \frac{1}{4} )^{3}  + 2( \frac{ \sqrt{3} }{4}  -  \frac{1}{4} )^{2}  - 2 \sqrt{3}  + 2 + 2 \\  \\  = 4( {( \frac{ \sqrt{3} }{4})  }^{3}  -  {( \frac{1}{4} )}^{3}  - 3( \frac{ \sqrt{3} }{4} )( \frac{4}{4} )( \frac{ \sqrt{3} }{4}  -  \frac{1}{4} )) + 2(( { \frac{ \sqrt{3} }{4})  }^{2}  +  {( \frac{1}{4}) }^{2}  + 2( \frac{ \sqrt{3} }{4} )( \frac{1}{4} )) - 2 \sqrt{3}  + 4 \\  \\  = 4(( \frac{3 \sqrt{3} }{64}  -  \frac{1}{64}  -  \frac{12 \sqrt{3} }{16}  \times  \frac{ \sqrt{3} }{4}  -  \frac{12 \sqrt{3} }{16}   \times  \frac{1}{4} ) + 2( \frac{3}{16}  +  \frac{1}{16}  +  \frac{2 \sqrt{3} }{16} ) - 2 \sqrt{3 }  + 4 \\  \\  = 4( \frac{3 \sqrt{3} }{64}  -  \frac{1}{64}  -  \frac{9 }{16}  -  \frac{3 \sqrt{3} }{16} ) + 2( \frac{1}{4}  +  \frac{2 \sqrt{3} }{16} ) - 2 \sqrt{3}  + 4 \\  \\  = 4 \times  \frac{3 \sqrt{3} }{64}  - 4 \times  \frac{1}{64}  - 4 \times  \frac{9}{16}  - 4  \times   \frac{3 \sqrt{3} }{16}  + 2 \times  \frac{1}{4}  + 2 \times  \frac{2 \sqrt{3} }{16}  - 2 \sqrt{3}  + 4 \\  \\  =  \frac{3 \sqrt{3} }{16}  -  \frac{1}{16}  -  \frac{9}{4}  -  \frac{3 \sqrt{3} }{4}  +  \frac{1}{2}  +  \frac{ \sqrt{3} }{4  } - 2 \sqrt{3}   + 4 \\  \\  =  \frac{3 \sqrt{3} - 1 - 9 \times 4 - 3 \sqrt{3}   \times 4 + 1 \times 8 +  \sqrt{3}  \times 4 - 2 \sqrt{3}  \times 16 + 4 \times 16}{16}  \\  \\  =  \frac{3 \sqrt{3}  - 1 - 36 - 12 \sqrt{3}  + 8 + 4 \sqrt{3}  - 32 \sqrt{3}  + 64}{16}  \\  \\  =  \frac{ - 37 \sqrt{3}  + 35}{16}  \\  \\  =  \frac{35 - 37 \sqrt{3} }{16}


Hope this helps!!!

Thanks...

alokpal47788: hi what is this
Similar questions