Math, asked by Aashif9971, 1 year ago

if x plus one upon x equals to 7 find the value of x cube plus one upon x cube

Answers

Answered by ayushmanjaiswal
166
x cube + (1/x) cube = x cube +(1/x) cube +3{x(1/4)}{x+(1/x)}
Attachments:
Answered by mysticd
55

Answer:

Value of  x^{3}+\frac{1}{x^{3}}= 322

Step-by-step explanation:

Given

x+\frac{1}{x}=7 ---(1)

On cubeing both sides of the equation (1) , we get

\left(x+\frac{1}{x}\right)^{3}=7^{3}

\implies x^{3}+\left(\frac{1}{x}\right)^{3}+3x\times \frac{1}{x}(x+\frac{1}{x})= 343

\implies x^{3}+\left(\frac{1}{x}\right)^{3}+3\times 7= 343 /* From (1) */

\implies x^{3}+\frac{1}{x^{3}}+21= 343

\implies x^{3}+\frac{1}{x^{3}}= 343 - 21

\implies x^{3}+\frac{1}{x^{3}}= 322

Therefore,

Value of  x^{3}+\frac{1}{x^{3}}= 322

•••••

Similar questions