Math, asked by Anonymous, 11 months ago

Hi! :D

If the sum of the roots of the quadratic equation :
 \frac{1}{x + p}  +  \frac{1}{x + q}  =  \frac{1}{r}
is zero, show that the product of the roots is :
(  - \frac  { p^{2}  +  {q}^{2} }{2} )

Answers

Answered by Nereida
12

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

Quadratic equation :- \dfrac{1}{x + p}  +  \dfrac{1}{x + q}  =  \dfrac{1}{r}

Solving it further,

\leadsto { \dfrac{x + q + x + p}{(x + p)(x + q)}  =  \dfrac{1}{r}}

\leadsto { \dfrac{2x + p + q}{(x + p)(x + q)} =  \dfrac{1}{r}}

\leadsto {(2x + p + q)r = (x + p)(x + q)}

\leadsto {2xr + pr + qr =  {x}^{2}  + x(p + q) + pq}

 \leadsto {{x}^{2}  + x(p + q - 2r) + (pq - r(p + q)) = 0}

So;a = 1,

b = (p + q - 2r)and

c = [pq - r(p + q)]

Sum of zeros :-  \alpha  +  \beta  =  \dfrac{ - b}{a}  =  \dfrac{ - (p + q - 2r)}{1}

Product of zeros:-  \alpha  \times  \beta  =  \dfrac{c}{a}  =  \dfrac{pq - r(p + q)}{1}

It is given that,

Sum of the zeros is equal to 0.

So,

\leadsto  { \dfrac{ - (p + q - 2r)}{1}  = 0}

\leadsto { - (p + q - 2r) = 0}

\leadsto { - p - q + 2r = 0}

\leadsto  { - p - q =  - 2r}

\leadsto  { - (p + q) =  - 2r}

\leadsto {p + q = 2r}

\leadsto  {r =  \dfrac{p + q}{2} }

Substituting the value of "r" in the equation formed by the product of zeros:-

 =  \dfrac{pq - (( \dfrac{p + q}{2})( p + q)) }{1}

 =  pq -  ( \dfrac{ {(p + q)}^{2} }{2} )

 = pq -  (\dfrac{ {p}^{2}  +  {q}^{2} + 2pq }{2} )

 = pq -   \dfrac{ {p}^{2}  -  {q}^{2}  - 2pq}{2}

 =  \dfrac{2pq -  {p}^{2}  -  {q}^{2}  - 2pq}{2}

  = \dfrac{ -  {p}^{2} -  {q}^{2}  }{2}

=( - \dfrac { p^{2} + {q}^{2} }{2} )

Hence proved !!!!

Answered by Anonymous
18

Given Equation,

 \large{ \sf{ \frac{1}{x + p} +  \frac{1}{x + q} =  \frac{1}{r}   }} \\

Any quadratic equation should be of the form ax² + bx + c = 0.

Implies,

 \large{ \hookrightarrow \:  \sf{ \frac{(x + p) + (x + q)}{(x + p)(x + q)}  =  \frac{1}{r} }} \\  \\  \large{ \hookrightarrow \:  \sf{r(2x + p + q) = x {}^{2} + (p + q)x + pq }} \\  \\  \large{ \hookrightarrow \:  \sf{2xr + pr + qr = x  {}^{2} + (p + q)x + pq}} \\  \\  \large{ \hookrightarrow \:   \boxed{\sf{ {x}^{2} + (p + q - 2r)x + pq - qr - pr = 0 }}}

Here,

  • a = 1
  • b = p + q - 2r
  • c = pq - qr - pr

Sum of the Roots is Zero

 \large{ \implies \:  \sf{ - (p + q - 2r) = 0}} \\  \\  \large{ \implies \:  \sf{2r = p + q}} \\  \\  \large{ \implies \:  \boxed{ \boxed{ \sf{r =  \frac{p + q}{2} }}}..............(1)}

Product of Roots will be (pq - qr - pr)

 \large{ \longrightarrow \:  \sf{pq - q( \frac{p + q}{2}) - p( \frac{p + q}{2}) \ \ \ \ \  [From (1)]}} \\  \\  \large{ \longrightarrow \:  \sf{pq -  \frac{pq}{2}  -  \frac{ {q}^{2} }{2} -  \frac{{p}^{2} }{2}  -  \frac{pq}{2}  }} \\  \\  \large{ \longrightarrow \: \sf{pq -  \frac{2pq}{2}  -  \frac{1}{2}(p {}^{2} + q {}^{2})   }} \\  \\  \huge{ \longrightarrow \:  \sf{ -  \frac{(p {}^{2} +  {q}^{2})  }{2} }}

Henceforth, Proved

Note

  • Sum of Roots : - x coefficient/x² coefficient

  • Product of Roots : constant term/x² coefficient
Similar questions