Math, asked by yestidotru, 3 months ago

hi friends please say me the correct answer​

Attachments:

Answers

Answered by animaldk
0

Answer:

\huge\boxed{k=6}

Step-by-step explanation:

\lim\limits_{x\to\infty}\left(\dfrac{x}{x-3}\right)^{2x}=\lim\limits_{x\to\infty}\left(\dfrac{x-3+3}{x-3}\right)^{2x}=\lim\limits_{x\to\infty}\left(\dfrac{x-3}{x-3}+\dfrac{3}{x-3}\right)^{2x}\\\\=\lim\limits_{x\to\infty}\left(1+\dfrac{3}{x-3}\right)^{2x}=\lim\limits_{x\to\infty}\left(1+\dfrac{3}{x-3}\right)^{\frac{x-3}{x-3}\cdot2x}\\\\=\lim\limits_{x\to\infty}\left[\left(1+\dfrac{3}{x-3}\right)^{x-3}\right]^{\frac{2x}{x-3}}

=\lim\limits_{x\to\infty}\left[\left(1+\dfrac{3}{x-3}\right)^{x-3}\right]^{\frac{2}{1-\frac{3}{x}}}=(e^3)^2=e^6

Similar questions