Math, asked by aniket3303, 1 year ago

hi friends
plz answer​

Attachments:

Answers

Answered by nain31
8
 \bold{GIVEN}

Line AB and CD are parallel ,

So,

 \mathsf{\angle A = 36}

Reason :-

Alternate interior angles

Now, in ΔECD

 \mathsf{\angle ECD = 36^{\circ}}

 \mathsf{\angle EDC= 32^{\circ}}

By angle sum property sum of all angles in triangle is equal to 180 degress.

So,

 \angle EDC +\angle ECD +\angle CED = 180

 \mathsf{32 +36 +\angle CED = 180}

 \mathsf{68 +\angle CED = 180}

 \mathsf{\angle CED = 180 - 68}

 \mathsf{\angle CED = 112^{\circ}}

By straight line angle property,

 \mathsf{\angle CED + \angle ACE = 180}

Since,

 \mathsf{\angle CED = 112^{\circ}}

so,

 \mathsf{112 + \angle ACE = 180}

 \mathsf{\angle ACE = 180 -112}

 \mathsf{ \angle ACE = 68^{\circ}}

Since, CE = AC ,given in question so,

 \mathsf{\angle ACE = \angle b = 68^{\circ}}

Now, in ΔACE

 \mathsf{\angle c +\angle b +\angle CED = 180}

 \mathsf{\angle c +68 +68= 180^{\circ}}

 \mathsf{\angle c +136 = 180^{\circ}}

 \mathsf{\angle c = 180-136}

 \mathsf{\angle c = 44^{\circ}}

So,

 \large \boxed{\mathsf{\angle a= 36^{\circ}}}

 \large \boxed{\mathsf{\angle b= 68^{\circ}}}

 \large \boxed{\mathsf{\angle c= 44^{\circ}}}

Hence,

 \bold{OPTION \: 2 \: IS \: CORRECT}
Answered by AJThe123456
11

Solution:-

To Find:-

a = ?

a = ?b =?

a = ?b =?c = ?

Find:-

In ∆ ECD,

∠ECD + ∠EDC + ∠CED = 180° (By Angle Sum Property of a Triangle)

=) 32° + 36° + ∠CED = 180°

=) ∠CED = 180° - 68°

=) ∠CED = 112°

Now,

∠CED + ∠CEA = 180° ( Linear Pair)

=) ∠CEA = 180° - 112°

=) ∠CEA = 68°

Now, In Isosceles ∆ AEC

AC = EC

=) ∠CAE = ∠CEA

=) ∠CAE = b = 68°

In ∆ ACE,

∠ACE + ∠CAE + ∠CEA = 180° ( A.S.P.)

=) c = 180° - 68° - 68°

=) c = 44°

And

Since, AB || DC

=) ∠a = ∠ADC ( By Alternate Interior Angle)

=) ∠a = 36°.

Hence,

∠a = 36°

∠a = 36°∠b = 68°

∠a = 36°∠b = 68°∠c = 44°

Similar questions