Physics, asked by TheLifeRacer, 11 months ago

Hi friends !

Solve this , with process . ​

Attachments:

Answers

Answered by Rajshuklakld
11

we know that

r=mv/qb

r=p/qb

where p =mv=momentum

also we know

momentum=√2mke

so we can write

r=√2mKe/qb

now we know that

Ke and b is same for all the three subatomic particles so,

we can write

r directly proportional to (√m)/q

re=√Me/e......i)

rp=√Mp/e......ii)

mass of alpha particle is 4 times of proton mass and have charge 2

ra=√4Mp/2e

ra=√Mp/e.......III)

Me<Mp.....iv)

comparing all the above eqaution we can write

re<rp=ra

Answered by shadowsabers03
2

The kinetic energy of a particle revolving around a circular path in a uniform magnetic field is given by,

\sf{\longrightarrow K=\dfrac{q^2B^2r^2}{2m}}

where

  • \sf{q=} charge of the particle
  • \sf{B=} magnetic field
  • \sf{r=} radius of the circular path
  • \sf{m=} mass of the particle

The equation can be rewritten as,

\sf{\longrightarrow 2mK=q^2B^2r^2}

In the question \sf{K} and \sf{B} are constants. So,

\sf{\longrightarrow m\propto q^2r^2}

\sf{\longrightarrow r\propto\dfrac{\sqrt m}{q}}

Let,

\sf{\longrightarrow r=k\cdot\dfrac{\sqrt m}{q}}

where \sf{k} is a positive constant.

Mass of electron \sf{=9.1\times10^{-31}\ kg.}

Charge of electron \sf{=1.6\times10^{-19}\ C.}

Then, radius of path of electron,

\sf{\longrightarrow r_e=k\cdot\dfrac{\sqrt{9.1\times10^{-31}}}{1.6\times10^{-19}}}

\sf{\longrightarrow r_e=6.0k\times10^3\ m}

Mass of proton \sf{=1.7\times10^{-27}\ kg.}

Charge of proton \sf{=1.6\times10^{-19}\ C.}

Then, radius of path of proton,

\sf{\longrightarrow r_p=k\cdot\dfrac{\sqrt{1.7\times10^{-27}}}{1.6\times10^{-19}}}

\sf{\longrightarrow r_p=2.6k\times10^5\ m}

Mass of alpha particle \sf{=6.8\times10^{-27}\ kg.}

Charge of alpha particle \sf{=3.2\times10^{-19}\ C.}

Then, radius of path of proton,

\sf{\longrightarrow r_\alpha=k\cdot\dfrac{\sqrt{6.8\times10^{-27}}}{3.2\times10^{-19}}}

\sf{\longrightarrow r_\alpha=2.6k\times10^5\ m}

Comparing each radius we get,

\sf{\longrightarrow\underline{\underline{r_e&lt;r_p=r_\alpha}}}

Hence (D) is the answer.

Similar questions