hi guys....
good morning
maximum and minimum value of
2 sin² x - 3 sin x +2 is.....
also give proper explanation...
50 points..
Answers
Hola mate
✍️✍️Answer:-
You probably mean the minimum and maximum value of 2 sin^2 (x) - 3 sinx + 2.
Let y = 2 sin^2 (x) - 3 sinx + 2
For y to be minimum or maximum,
dy/dx = 0
Or, 4 sinx cosx - 3 cosx = 0
Or, cosx (4 sinx - 3) = 0
cosx = 0, sinx = 3/4
x = 90°, 48.59°.
d^2 y / dx^2
= 4 (cos^2 (x) - sin^2 (x)) + 3 sinx
= 4 cos (2x) + 3 sinx
When x = 90°, d^2 y / dx^2 = -1 < 0
So, y is maximum when x = 90°
When x = 48.59°, d^2 y / dx^2 = 1.75 > 0
So, y is minimum when x = 48.59°
y (max) = 2 sin^2 (90°) - 3 sin (90°) + 2
= 1
y (min) = 2 sin^2 (48.59°) - 3 sin (48.59°) + 2 = 0.875
hi mate,
solution: Here the minimum and maximum value of 2 sin^2 (x) - 3 sinx + 2.
Let y = 2 sin^2 (x) - 3 sinx + 2
so, For y to be minimum or maximum,
dy/dx = 0
Or, 4 sinx cosx - 3 cosx = 0
Or, cosx (4 sinx - 3) = 0
cosx = 0, sinx = 3/4
x = 90°, 48.59°.
d^2 y / dx^2
= 4 (cos^2 (x) - sin^2 (x)) + 3 sinx
= 4 cos (2x) + 3 sinx
When x = 90°, d^2 y / dx^2 = -1 < 0
So, y is maximum when x = 90°
When x = 48.59°, d^2 y / dx^2 = 1.75 > 0
So, y is minimum when x = 48.59°
y (max) = 2 sin^2 (90°) - 3 sin (90°) + 2
= 1
y (min) = 2 sin^2 (48.59°) - 3 sin (48.59°) + 2 = 0.875
i hope it helps you...