Math, asked by potrri, 1 year ago

hi please answer both the question I will make sure a brainlist​

Attachments:

Answers

Answered by dipikathesilenteyes
0

Answer:

it is related to your question hope it helps you..

Attachments:
Answered by Anonymous
6

SOLUTION:21

Given:

sin∅ + cos∅= p

sec∅ + cosec∅= q

Now,

p² -1

=) (sin∅+cos∅)² -1

=) (sin²∅ + 2sin∅cos∅+cos²∅)-1

=) [(sin²∅+cos²∅)+2sin∅cos∅]-1

=) [1+2sin∅cos∅]-1

=) 2sin∅cos∅.............(1)

So,

q(p² -1)

=) (sec∅ +cosec∅) ×(2sin∅cos∅) [from(1)]

=) sec∅ ×(2sin∅cos∅) + cosec∅ ×(2sin∅cos∅)

=)(1/cos∅)×(2sin∅cos∅)+(1/sin∅)×(2sin∅cos∅)

=) 2sin∅ + 2cos∅

=) 2(sin∅ + cos∅)

=) 2p [proved]

SOLUTION:22

cosec \theta + cot \theta = p...........(1) \\ now \\  cosec {}^{2}  \theta -  {cot}^{2}  \theta = 1 \\  \\  =  > (cosec \theta  + cot \theta)(cosec \theta - cot \theta) = 1 \\  \\  =  > p(cosec \theta - cot \theta) = 1 \\  \\  =  > cosec \theta - cot \theta =  \frac{1}{p}..............(2)

Adding equation (1) & (2) we get;

 =   > 2cosec \theta = p +  \frac{1}{p}  \\  \\  =  > cosec \theta =  \frac{ {p}^{2} + 1 }{2p}  \\  \\  =  > sin \theta =  \frac{1}{cosec \theta}  =  \frac{2p}{ {p}^{2} + 1 }  \\  \\  =  > cos \theta =  \sqrt{1 -  {sin}^{2}  \theta}  =  \sqrt{1 -  \frac{4 {p}^{2} }{( {p}^{2} + 1) {}^{2}  } }  \\  \\  =  >  \sqrt{ \frac{ {p}^{4}  + 1 - 2 {p}^{2} }{( {p}^{2} + 1) {}^{2}  } }  \\  \\  =  >  \sqrt{ \frac{( {p}^{2} - 1) {}^{2}  }{( { p }^{2} + 1) {}^{2}  } }  \\  \\  =  >  \frac{ {p}^{2} - 1 }{ {p}^{2}  + 1 }

Proved.

Hope it helps ☺️

Similar questions