Math, asked by TheLifeRacer, 7 months ago

Hi !

Solve this one step by step !

Plz don't spam . ​

Attachments:

Answers

Answered by shadowsabers03
14

The given sum is,

\longrightarrow S=1+49+49^2+\,\dots\,+49^{125}

which is a geometric series of a=1,\ r=49>1 and n=126.

Thus,

\longrightarrow S=\dfrac{a(r^n-1)}{r-1}

\longrightarrow S=\dfrac{49^{126}-1}{49-1}

Since n^2-1=(n+1)(n-1),

\longrightarrow S=\dfrac{(49^{63}+1)(49^{63}-1)}{49-1}

Since \displaystyle\dfrac{a^n-1}{a-1}=\sum_{r=1}^na^{n-r},

\displaystyle\longrightarrow S=(49^{63}+1)\sum_{r=1}^{63}49^{63-r}

\longrightarrow S=(49^{63}+1)(49^{62}+49^{61}+49^{60}+\,\dots\,+1)

This implies,

\longrightarrow (49^{63}+1)\ \Big|\ S

And therefore,

\longrightarrow\underline{\underline{k=63}}

Hence (D) is the answer.

Shortcut:-

We see that,

\begin{aligned}\longrightarrow\ \ &(1+a+a^2+\,\dots\,+a^{k-1})(1+a^k+a^{2k}+\,\dots\,+a^{nk})\\=\ \ &1+a+a^2+\,\dots\,+a^{(n+1)k-1}=S\quad\quad\dots(2)\end{aligned}

This implies,

\longrightarrow (1+a^k+a^{2k}+\,\dots\,+a^{nk})\ \Big|\ S

which can be reduced as,

\longrightarrow (1+a^k)\ \Big|\ S

if and only if n=1.

Then (2) becomes,

\longrightarrow(1+a+a^2+\,\dots\,+a^{k-1})(1+a^k)=1+a+a^2+\,\dots\,+a^{2k-1}=S\quad\quad\dots(3)

Let,

\longrightarrow S=1+a+a^2+\,\dots\,+a^m\quad\quad\dots(4)

Comparing (3) and (4),

\longrightarrow m=2k-1

\longrightarrow\boxed{k=\dfrac{m+1}{2}}

Therefore,

\boxed{\begin{minipage}{9.7cm}The greatest positive integer $k$ for which $(a^k+1)$ is a factor of\\$1+a+a^2+\,\dots\,+a^m$ is,\begin{center}$k=\dfrac{m+1}{2}$\end{center}\end{minipage}}

In the question, m=125.

So the answer is,

\longrightarrow k=\dfrac{125+1}{2}

\longrightarrow\underline{\underline{k=63}}

Hence (D) is the answer.

Answered by payalkumari52095
0

Answer:

The answer of this question is option d.

Similar questions