Math, asked by TANU81, 1 year ago

Hi there!

Prove that ↑

#Don't spam

Attachments:

Answers

Answered by Anonymous
16

Given :-

 \mathsf{\dfrac{Cos\theta + \iota Sin\theta }{Cos\phi + \iota Sin\phi}}

To show :-

\mathsf{Cos(\theta - \phi) +\iota Sin(\theta - \phi)}

Solution:-

  • Considering L. H. S

\mathsf{ \dfrac{Cos\theta + \iota Sin\theta }{Cos\phi + \iota Sin\phi }\times \dfrac{Cos\phi -\iota Sin \phi}{Cos\phi - \iota Sin\phi}}

\mathsf{ \dfrac{(Cos\theta + \iota Sin\theta )(Cos\phi - \iota Sin \phi )}{Cos^2 \phi -\iota^2 Sin^2\phi}}

 \mathsf{\dfrac{Cos\theta .Cos\phi - Cos\theta.\iota Sin\phi+\iota Sin\theta .Cos\phi -\iota^2 Sin\theta .Sin\phi}{Cos^2\phi + Sin^2\phi}}

 \mathsf{\dfrac{Cos\theta .Cos\phi + Sin\theta .Sin\phi +\iota (Sin\theta .Cos\phi -Sin\phi.Cos\theta)}{1}}

\mathsf{ Cos(\theta -\phi) + \iota Sin(\theta - \phi)}

hence, proved...

Formula used :-

\mathsf{{Cos(A-B)= CosA. CosB +SinA. SinB}}

 \mathsf{{Sin(A-B) = SinA. CosB -SinB.CosA}}


Anonymous: Nice
Answered by Anonymous
21

Heya!

Refer to the attachment!

Attachments:

Anonymous: good one!
Similar questions