Math, asked by sujay66, 1 year ago

Hi this is for genius

Attachments:

Answers

Answered by TheUrvashi
8
\textbf{Solution}

Squaring both sides we have

 \bf{x}^{2} = ( 3 + { \sqrt{8} )}^{2} \\ \\ {x}^{2} = 9 + 8 + 6 \sqrt{8} \\ \\ {x}^{2} = 17 + 12 \sqrt{2} \\ \\ Then \: \: \frac{1}{ {x}^{2} } = 17 - 12 \sqrt{2} \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 17 + 12\sqrt{2} + 17 - 12 \sqrt{2} \\ \\ = 34

Thanks

Have a colossal day ahead

Be Brainly

sujay66: Thanks you so much
TheUrvashi: wlcm :)
sujay66: Ur form
sujay66: Riya ur from
sujay66: Acepct my friend request
sujay66: Hi riya happy b day
Answered by Anonymous
8
<b>Answer :

 =  > x = 3 +  \sqrt{8}  \\  \\ lets \: find \: the \: value \: of \:  \frac{1}{x}  \: first.... \\  \\  =  >  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \\  \\  =  >   \frac{1}{3 +  \sqrt{8} }  \times  \frac{3 -  \sqrt{8} }{3 -  \sqrt{8} }  \\  \\  =  >  \frac{3 -  \sqrt{8} }{ {(3)}^{2}  -  {( \sqrt{8}) }^{2} }  \\  \\  =  >  \frac{3 -  \sqrt{8} }{9 - 8}  \\  \\  =  >  \frac{3 -  \sqrt{8} }{1}  \\  \\  =  > 3 -  \sqrt{8}

Now, let's get the value of...

 =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\  put \: x = 3 +  \sqrt{8}  \:  \\   =  > \frac{1}{x}  = 3 -  \sqrt{8}  \\  \\   =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(3 +  \sqrt{8}) }^{2}  +  {(3 -  \sqrt{8}) }^{2}  \\  \\  =  >  {(3)}^{2}  +  {( \sqrt{8} )}^{2}  + 2 \times 3 \times  \sqrt{8}  + ( {(3)}^{2}  +  {( \sqrt{8} )}^{2}  - 2 \times 3 \times  \sqrt{8} ) \\  \\  =  > 9 + 8 + 6 \sqrt{8}  + (9 + 8 - 6 \sqrt{8} ) \\  \\  =  > 17 + 6 \sqrt{8} +  (17 - 6 \sqrt{8} ) \\  \\  =  > 17 + 6 \sqrt{8}  + 17 - 6 \sqrt{8 }  \\  \\  =  > 17 + 17 \\  \\  =  > 34

\color{pink}\underline\textbf{Hence, 34 is your required answer. }

Tysm for the question!

sujay66: Thanks
Anonymous: Wello :)
Similar questions