Math, asked by apurva7kar, 1 day ago

hi trigonometry PLZ help
it's from RD Sharma
pg 10.59
MCQ set


☞no spamming PLZ it's important​

Attachments:

Answers

Answered by TanmayStatus
4

 \huge \mathsf  \orange{ \underline{ \underline\red{Answer}}}  \green\downarrow

Option (b) 0 is correct

 \mathsf  \blue{ \underline{ \underline\pink{Step-by-step \:  explanation}}}  \purple\downarrow

The expression given in the question is:

 \bf \red{2 \sec^{2} \theta \:  +  \: 2 \tan^{2}\theta \:  -  \: 7}

Now, we are going to convert the above

expression in terms of \sec^{2} \theta using the trigonometric identity:

 \bf \red{1 \:  +  \:  \tan^{2} \theta \:  =  \:  \sec^{2} \theta}

 \bf \red {\Longrightarrow \:  \tan^{2} \theta \:  =  \:  \sec^{2} \theta \:  -  \: 1}

Substituting the above value of \tan^{2} \theta in the given expression 4 \sec^{2} \theta \:  -  \: 9 we get,

 \bf \red{4( \frac{3}{2})^{2}  \:  -  \: 9}

 \bf  \red{=  \: 4( \frac{9}{4})\:  -  \: 9}

  \bf \red{=  \: 9 \:  -  \: 9 \:  =  \: 0}

From the above calculation, the value of the given expression is 0.

Hence, the correct option is (b).

Note: In the above solution instead of using the identity 1 \:  +  \:  \tan^{2} \theta \:  =  \:  \sec^{2} \theta we can substitute the value of the tan θ in the given expression 2\sec^{2}\theta \:  +  \:  \tan^{2} \theta \:  -  \: 7. Now, we can find the value of tan θ as follows:

 \bf \red{ \cos \theta \:  =  \:  \frac{2}{3} }

In the below diagram, we have shown a triangle ABC right angled at B along with an angle \theta.

In the above figure, “P” stands for perpendicular with respect to angle θ, “B” stands for the base with respect to angle θ and “H” stands for the hypotenuse with respect to angle \theta.

We know that, cosθ is equal to base divided by hypotenuse so using Pythagoras theorem we can find the perpendicular of the triangle.

 \bf \red{ \cos \theta \:  =  \:  \frac{B}{H} }

 \bf \red{{H^{2}  \:  = B^{2}  \:  +  \: P^{2} }}

 \bf \red{\Rightarrow \: 9 \:  =  \: 4 \:  +  \: P^{2} }

 \bf \red{\Rightarrow P^{2}  \:  =  \: 5}

 \bf \red{\Rightarrow \: P \:  =  \:  \sqrt{5} }

From the above calculation, we can find the value of tanθ :

 \bf  \red{\tan \theta \:  =  \:  \frac{ \sqrt{5} }{2} }

Substituting this value of tanθ in the given expression we get,

 \bf \red{2 (\sec^{2} \theta \:  +  \:  \tan^{2} \theta) \:  -  \: 7}

 \bf  \red{=  \: 2( \frac{9}{4}  \:  +  \:  \frac{5}{4} ) \:  -  \: 7}

 \bf  \red{=  \: 2( \frac{14}{4} ) \:  -  \: 7}

\bf \red{=  \: 7 \:  -  \: 7 \:  =  \: 0}

Hence, we have got the answer as 0.

I hope it's helps you ❤️.

Please markerd as brainliest answer.

Attachments:
Similar questions