Math, asked by Aarchi111, 1 year ago

Hii guys, what's up, .pls solve this question 30,27,26 only

Attachments:

Answers

Answered by jaya1012
4
Hiii. .....friend

The answer is here,


26)  = > \: {x}^{2} + {y}^{2} = 23xy
Adding 2xy on both sides.

 = > \: {x}^{2} + {y}^{2} + 2xy = 23xy + 2xy

 = > \: ( {x + y)}^{2} = 25xy

 = > \: x + y = \sqrt{25xy} = 5 \sqrt{xy}

 = > \: \frac{x + y}{5} = \sqrt{xy}

Join log on both sides.

 = > \: log( \frac{x + y}{5} ) = log( \sqrt{xy} )

 = > \: log( \frac{x + y}{5} ) = log( {xy)}^{ \frac{1}{2} }

 = > \: log( \frac{x + y}{5} ) = \frac{1}{2}( log(x) + log(y) )
Hence, Proved.

27) \: p = log_{10}(20) \: and \: \: q = log_{10}(25)

Given that,

 = > \: 2 log_{10}(x + 1) = 2p - q

 = > \: 2 log_{10}(x + 1) = 2 log_{10}(20) - log_{10}(25)

 = > \: log_{10}( {x + 1)}^{2} = log_{10}( \frac{400}{25} )
If we compare LHS and RHS . We get,

 = > ({x + 1)}^{2} = \frac{400}{25}
 = > \: x + 1 = \sqrt{ \frac{400}{25} } = \frac{20}{5}

 = > \: x + 1 = 4

 = > \: x = 3

30) \: log_{a}(x) = \frac{1}{ \alpha } = \frac{ log(x) }{ log(a) }

 = > \: log(a) = \alpha log(x)

 log_{b}(x) = \frac{1}{ \beta } = \frac{ log(x) }{ log(b) }

 = > \: log(b) = \beta log(x)

 log_{c}(x) = \frac{1}{ \gamma } = \frac{ log(x) }{ log(c) }
 = > \: log(c) = \gamma log(x)

 = > \: log_{abc}(x) = \frac{ log(x) }{ log(a) + log(b) + log(c) }
 = > \: \frac{ log(x) }{ \alpha log(x) + \beta log(x) + \gamma log(x) }

 = > \: \frac{ log(x) }{ log(x) ( \alpha + \beta + \gamma )}

 = > \: \frac{1}{ \alpha + \beta + \gamma }

:-)Hope it helps u.

Aarchi111: no
Aarchi111: I'm here
Aarchi111: yep
Aarchi111: but not yet log in
Aarchi111: not now
Aarchi111: okk
Similar questions