Math, asked by Anonymous, 1 year ago

hiii guys ☺☺☺
If the roots are the equation is ax^2+2bx+c =0 and bx^2-2√acx + b = 0 are simultaneously real , then proof that [b^2-ac ] ..plzz solve .........

Answers

Answered by atul103
41
Hello! sanskriti!
#ur Ans
________________

Given that :
Root of both the equation are real
so,

1st equation :
------------------


a {x}^{2}  + 2bx + c = 0 \\  \\ here \: descriminant \: so \\
➡ D ≥ 0

 =  > (2b {)}^{2}  - 4(ac)  \geqslant  0 \\  \\  =  > 4 {b}^{2}  - 4ac \geqslant 0 \\  \\  =  > 4  {b}^{2}  \geqslant 4ac \\ \\   =  >  {b}^{2}  \geqslant ac............(1) \\  \\ now \: 2nd \: equation \\  \\  =  > b {x}^{2}  - 2 \sqrt{(ac)} \:  x + b = 0 \\  \\  =  > here \: decriminant \\ so
➡ D ≥ 0
 =  >( 2 \sqrt{ac)}  { \: ) }^{2}  - 4 ({b}^{2} ) \geqslant 0 \\  \\  =  > 4ac - 4 {b}^{2}  \geqslant 0 \\  \\  =  > ac \geqslant  {b}^{2} .........(2) \\ \: the \: result \: of \:  \: eq \: 1 \: and \: eq \: 2 \: are \:  \\  \: simultaneousely \: \: possible \\  \: only \: one \: case \: when \\  \\  =  >  {b}^{2}  = ac \\  \\ or \\  \\  =  > b {}^{2}  - 4ac \:  \\ hence \: proved

☺✌:-)
Answered by mathsdude85
2

SOLUTION :  

Given : ax² + 2bx + c = 0 …………(1)

and bx² - 2√acx + b = 0…………..(2)

On comparing the given equation with Ax² + Bx + C = 0  

Let D1 & D2 be the discriminants of the two given equations .

For eq 1 :  

Here, A = a  , B =  2b , C = c

D(discriminant) = B² – 4AC

D1 = (2b)² - 4 × a × C

D1 = 4b² - 4ac ………(3)

For eq 2 :  

bx² - 2√acx + b = 0

Here, A = b  , B =  - 2√ac, C = b

D(discriminant) = B² – 4AC

D2 = (- 2√ac)² - 4 × b × b  

D2 = 4ac - 4b² …………(4)

Given : Roots are real for both the Given equations i.e D ≥ 0.

D1 ≥ 0  

4b² - 4ac ≥ 0  

[From eq 3]

4b²  ≥ 4ac  

b² ≥ ac  ………….(5)

D2 ≥ 0

4ac - 4b²  ≥ 0

4ac  ≥ 4b²

ac  ≥ b² …………(6)

From eq 5 & 6 ,  

b² = ac  

HOPE THIS ANSWER WILL HELP YOU...

Similar questions