hiii guys ☺☺☺
If the roots are the equation is ax^2+2bx+c =0 and bx^2-2√acx + b = 0 are simultaneously real , then proof that [b^2-ac ] ..plzz solve .........
Answers
Answered by
41
Hello! sanskriti!
#ur Ans
________________
Given that :
Root of both the equation are real
so,
1st equation :
------------------
➡
➡ D ≥ 0
➡ D ≥ 0
☺✌:-)
#ur Ans
________________
Given that :
Root of both the equation are real
so,
1st equation :
------------------
➡
➡ D ≥ 0
➡ D ≥ 0
☺✌:-)
Answered by
2
SOLUTION :
Given : ax² + 2bx + c = 0 …………(1)
and bx² - 2√acx + b = 0…………..(2)
On comparing the given equation with Ax² + Bx + C = 0
Let D1 & D2 be the discriminants of the two given equations .
For eq 1 :
Here, A = a , B = 2b , C = c
D(discriminant) = B² – 4AC
D1 = (2b)² - 4 × a × C
D1 = 4b² - 4ac ………(3)
For eq 2 :
bx² - 2√acx + b = 0
Here, A = b , B = - 2√ac, C = b
D(discriminant) = B² – 4AC
D2 = (- 2√ac)² - 4 × b × b
D2 = 4ac - 4b² …………(4)
Given : Roots are real for both the Given equations i.e D ≥ 0.
D1 ≥ 0
4b² - 4ac ≥ 0
[From eq 3]
4b² ≥ 4ac
b² ≥ ac ………….(5)
D2 ≥ 0
4ac - 4b² ≥ 0
4ac ≥ 4b²
ac ≥ b² …………(6)
From eq 5 & 6 ,
b² = ac
HOPE THIS ANSWER WILL HELP YOU...
Similar questions