Math, asked by muakanshakya, 1 year ago

hiii.....mates
.
✌️✌️

➖➖➖➖➖➖➖➖➖➖⬇️
Ques:-. If sin theta + cos theta = p, Prove that sin theta =
 \frac{ {p}^{2}  - 1}{ {p}^{2}  + 1}


Spammers will be reported

Answers

Answered by Anonymous
1

Given:

sin\theta + cos\theta = p

p^2 = (sin\theta + cos\theta)^2

\implies p^2 = sin^2\theta + cos^2\theta + 2sin\theta cos\theta

\implies p^2 = 1 + 2 sin\theta cos\theta ................(1)

p^2 - 1 = 2sin\theta cos\theta.........................(2)

p^2 + 1 = 2 + 2sin\theta cos\theta

Hey I guess your question is wrong

The correct question will be:

sec\theta + tan\theta = p

p^2 = (sec\theta + \frac{sin\theta}{cos\theta})^2

\implies p^2=\frac{(1+sin\theta)^2}{cos^2\theta}

\implies p^2 =\frac{(1+sin\theta)^2}{1-sin^2\theta}

\implies p^2=\frac{(1+sin\theta)^2}{(1+sin\theta)(1-sin\theta)}

\implies p^2=\frac{1+sin\theta}{1-sin\theta}

p^2-1 =\frac{1+sin\theta}{1-sin\theta}-1

\implies p^2-1=\frac{1+sin\theta-1+sin\theta}{1-sin\theta}

\implies p^2-1=\frac{2sin\theta}{1-sin\theta}.................(1)

p^2+1=\frac{1+sin\theta+1-sin\theta}{1-sin\theta}[

p^2+1=\frac{2}{1+sin\theta}........................(2)

Dividing 1 and 2

\frac{p^2-1}{p^2+1}=\frac{\frac{2 sin\theta}{1-sin\theta}}{\frac{2}{1-sin\theta}}

\implies \frac{2 sin\theta}{2}

\implies sin\theta

So:

\boxed{\frac{p^2-1}{p^2+1}=sin\theta}

Hence proved

Hope it helps you

_________________________________________________________________________


Anonymous: am i right ur question shud have been sec theta+tan theta = p
Answered by Anonymous
6
hey mate

here's the solution
Attachments:
Similar questions