hiiii.....pls .....solve
Attachments:
Answers
Answered by
9
Hello ❤️
_______________________
Just isolate one of the variables, and start plugging it into the other equations.
3x - 4y + z = 7
⇒ z = -3x + 4y + 7
Now plug it into another equation
2x - (-3x + 4y + 7) + 3y = 19
⇒ 2x + 3x - 4y - 7 + 3y = 19
⇒ 5x - y - 7 = 19
⇒ 5x - y = 26
⇒ -y = -5x + 26
⇒ y = 5x - 26
x + 2(5x - 26) + 2 {-3x + 4(5x - 26) + 7} = 24
⇒ x + 10x - 52 - 6x + 40x - 208 + 14 = 24
⇒ 45x = 270
∴ x = 6
y = 5(6) - 26
⇒ y = 30 - 26
∴ y = 4
z = -3x + 4y + 7
⇒ z = -3(6) + 4(4) + 7
⇒ z = -18 + 16 + 7
∴ z = 5
So x = 6 , y = 4 , and z = 5
The value of Z is 5.
_______________________
check your answer.
x + 2y + 2z = 24
6 + 2(4) + 2(5) = 24
6 + 8 + 10 = 24
24 = 24
_______________________
Hence, the value of z is 5.
Option ( B )
_______________________
Thanks for the question !
☺️☺️
_______________________
Just isolate one of the variables, and start plugging it into the other equations.
3x - 4y + z = 7
⇒ z = -3x + 4y + 7
Now plug it into another equation
2x - (-3x + 4y + 7) + 3y = 19
⇒ 2x + 3x - 4y - 7 + 3y = 19
⇒ 5x - y - 7 = 19
⇒ 5x - y = 26
⇒ -y = -5x + 26
⇒ y = 5x - 26
x + 2(5x - 26) + 2 {-3x + 4(5x - 26) + 7} = 24
⇒ x + 10x - 52 - 6x + 40x - 208 + 14 = 24
⇒ 45x = 270
∴ x = 6
y = 5(6) - 26
⇒ y = 30 - 26
∴ y = 4
z = -3x + 4y + 7
⇒ z = -3(6) + 4(4) + 7
⇒ z = -18 + 16 + 7
∴ z = 5
So x = 6 , y = 4 , and z = 5
The value of Z is 5.
_______________________
check your answer.
x + 2y + 2z = 24
6 + 2(4) + 2(5) = 24
6 + 8 + 10 = 24
24 = 24
_______________________
Hence, the value of z is 5.
Option ( B )
_______________________
Thanks for the question !
☺️☺️
pathak13:
tnx
Answered by
14
Hi there !
_______________________
Given :
3x - 4y + z = 7 ......... (i)
2x - Z + 3y = 19 .......... (ii)
x + 2y + 2z = 24......... (iii)
To find ;
What is the value of z?
Solution :
Take one of the equation, i. e.,
3x - 4y + z = 7
⇒ z = - 3x + 4y + 7......... (iv)
Now, substituting the value of z in eqⁿ (ii)
2x - z + 3y = 19
⇒ 2x - ( - 3x + 4y + 7 ) + 3y = 19
⇒ 2x + 3x - 4y - 7 + 3y = 19
⇒ 5x - y - 7 = 19
⇒ 5x - y = 26
⇒ y = 5x - 26 ........... (v)
Now putting the value of y and z in eqⁿ (iii)
x + 2y + 2z = 24
⇒ x + 2 ( 5x - 26 ) + 2 [ - 3x + 4 ( 5x - 26 ) - 7]
⇒ x + 10x - 52 - 6x + 40x - 208 + 14 = 24
⇒ 45x = 270
⇒ x = 270 / 45
⇒ x = 6
Now,
Putting the value of x in ( v )
y = 5x - 26
⇒ y = 5 × 6 - 26
⇒ y = 30 - 26
⇒ y = 4
And,
Putting the value of y in ( iv ),
z = - 3x + 4y + 7
⇒ z = - 3 * 6 + 4 * 4 + 7
⇒ z = - 18 + 16 + 7
⇒ z = 23 - 18
⇒ z = 5
Hence, the value of z is 5.
Option ( B ) is correct.
_______________________
Thanks for asking question !
☺️❤️☺️
_______________________
Given :
3x - 4y + z = 7 ......... (i)
2x - Z + 3y = 19 .......... (ii)
x + 2y + 2z = 24......... (iii)
To find ;
What is the value of z?
Solution :
Take one of the equation, i. e.,
3x - 4y + z = 7
⇒ z = - 3x + 4y + 7......... (iv)
Now, substituting the value of z in eqⁿ (ii)
2x - z + 3y = 19
⇒ 2x - ( - 3x + 4y + 7 ) + 3y = 19
⇒ 2x + 3x - 4y - 7 + 3y = 19
⇒ 5x - y - 7 = 19
⇒ 5x - y = 26
⇒ y = 5x - 26 ........... (v)
Now putting the value of y and z in eqⁿ (iii)
x + 2y + 2z = 24
⇒ x + 2 ( 5x - 26 ) + 2 [ - 3x + 4 ( 5x - 26 ) - 7]
⇒ x + 10x - 52 - 6x + 40x - 208 + 14 = 24
⇒ 45x = 270
⇒ x = 270 / 45
⇒ x = 6
Now,
Putting the value of x in ( v )
y = 5x - 26
⇒ y = 5 × 6 - 26
⇒ y = 30 - 26
⇒ y = 4
And,
Putting the value of y in ( iv ),
z = - 3x + 4y + 7
⇒ z = - 3 * 6 + 4 * 4 + 7
⇒ z = - 18 + 16 + 7
⇒ z = 23 - 18
⇒ z = 5
Hence, the value of z is 5.
Option ( B ) is correct.
_______________________
Thanks for asking question !
☺️❤️☺️
Similar questions