Math, asked by vishnupriya114744, 8 months ago

HIMETIC PROGRESSIONS
How many terms of the AP:9,17,25,... must be taken to give a sum of 636?
plss anwer my question very fast​

Answers

Answered by bhagwant98150
0

Answer:

hope this is helpful.

Attachments:
Answered by Anonymous
3

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • AP: 9,17,25
  • S_n = 636

{\bf{\blue{\underline{To\:Find:}}}}

  • n = ?

{\bf{\blue{\underline{Formula\:Used:}}}}

 : \dagger \:  \boxed  {\sf{  s_{n}  =  \frac{n}{2} [2a + (n - 1)d]}} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{  s_{n} =  \frac{n}{2} [2 \times 9 + (n - 1)8]}} \\ \\

 : \implies{\sf{ 636 =  \frac{n}{2} [18+ 8n - 8]}} \\ \\

 : \implies{\sf{ 1272 = n(10 + 8n)}} \\ \\

 : \implies{\sf{ 1272 = 10n + 8 {n}^{2} }} \\ \\

 : \implies{\sf{ 8 {n}^{2} + 10n - 1272 = 0 }} \\ \\

 : \implies{\sf{ 8 {n}^{2} + 106n - 96n - 1272 = 0 }} \\ \\

 : \implies{\sf{ 2n(4n + 53) - 24(4n + 53) = 0}} \\ \\

 : \implies{\sf{ (4n + 53)(2n - 24) = 0}} \\ \\

__________________________________

 \longmapsto{\sf{ (4n + 53) =  0}} \\ \\

 \longmapsto{\sf{ 4n   =- 53 }} \\ \\

 \longmapsto{\sf{ n   =   \frac{-53}{4}  }} \\ \\

n can never be negative so, we have to cancel this value.

__________________________________

 \longmapsto{\sf{ 2n  -  24 =  0}} \\ \\

 \longmapsto{\sf{ 2n   =  24 }} \\ \\

 \longmapsto{\sf{ n   =   \frac{24}{2}  }} \\ \\

 \longmapsto{\sf{ n   =  </strong><strong>1</strong><strong>2</strong><strong>  }} \\ \\

  • Hence n = 12
Similar questions