Math, asked by ItzShruti14, 5 months ago

hlo que is to prove .........see above attachment...


plz don't post irrelevant answer ✨✨​

Attachments:

Answers

Answered by Anonymous
85

 \large \underline \bold{Solution}:-

 \large \underline \bold{Method \: \: I}:-

LHS :-

\: \: \: \: \: \: \: \: \: \sf{Sin^{4} \theta \: - \: Cos^{4} \theta}

\sf{=> Sin^{4} \theta \: + \: Cos^{4} \theta \: - \: 2Cos^{4} \theta}

\sf{=> (Sin^{2} \theta)^{2} \: + \: (Cos^{2} \theta)^{2} \: - \: 2Cos^{4} \theta}

We know that -

\: \: \: \: \: \: \small\boxed{\sf\red{(a^{2} \: + \: b^{2}) \: = \: (a + b)^{2} \: - \: 2ab}}

So ,

\sf{=> (Sin^{2} \theta + Cos^{2} \theta)^{2} \: - \: 2Sin^{2} \theta Cos^{2} \theta \: - \: 2Cos^{4} \theta}

\: \: \: \: \: \: \small\boxed{\sf\pink{(Sin^{2} \theta \: + \: Cos^{2} \theta) \: = \: 1}}

then ,

\sf{=> (1)^{2} \: - \: 2Sin^{2} \theta Cos^{2} \theta \: - \: 2Cos^{4} \theta}

\sf{=> 1 \: - \: 2Sin^{2} \theta Cos^{2} \theta \: - \: 2Cos^{4} \theta}

\sf{=> 1 \: - \: 2Cos^{2} \theta(Sin^{2} \theta \: + \: Cos^{2} \theta)}

\sf{=> 1 \: - \: 2Cos^{2} \theta(1)}

\sf{=> 1 \: - \: 2Cos^{2} \theta}

=>\: \: \: \: \: \small \bold{ RHS}

 \large \underline \bold{Method \: \: II}:-

\: \: \: \: \: \: \: \: \: \sf{Sin^{4} \theta \: - \: Cos^{4} \theta}

\sf{=> (Sin^{2} \theta)^{2} \: - \: (Cos^{2} \theta)^{2}}

\: \: \: \: \: \: \small\boxed{\sf\red{(a^{2} \: - \: b^{2}) \: = \: (a \: + \: b)(a \: - \: b)}}

\sf{=> (Sin^{2} \theta \: + \: Cos^{2} \theta)(Sin^{2} \theta \: - \: Cos^{2} \theta)}

\sf{=> \: \: 1(Sin^{2} \theta \: - \: Cos^{2} \theta)}

\sf{=> \: \: \: (Sin^{2} \theta \: - \: Cos^{2} \theta)}

\sf{=> \: \: \: 1 \: - \: Cos^{2} \theta \: - \: Cos^{2} \theta}

 \small \bold{=> \: \: \: \: \: \: 1 \: - \: 2Cos^{2} \theta}

 \large \underline \bold{HENCE \: PROOF}


ItzShruti14: tq for ans
Anonymous: it's ok
ItzShruti14: hii
Similar questions