Math, asked by RajvanshiC, 9 months ago

Hlo...solve stepwise . .​

Attachments:

Answers

Answered by sandy1816
2

Answer:

your answer attached in the photo

Attachments:
Answered by Rajshuklakld
4

Above answer is nicely solved,but u can also proceed through this method to simiplify the term which needs to be diffrentiated

As we know

 {sin}^{ - 1} x 1+  {sin}^{ - 1} y1=  {sin}^{ - 1} (x1 \sqrt{1 -  {(y1)}^{2} }  + y1 \sqrt{1 -  {(x1)}^{2} }  \\ compare \: the \: terms \: with \: \\  above \: rhs \\  {sin}^{ - 1} (x1 \sqrt{1 -   {(y1)}^{2}  }   + y1 \sqrt{1 -  {(x1)}^{2} }  =  {sin}^{ - 1}  ( {x}^{2}  \sqrt{1 -  {x}^{2} }  + x \sqrt{1 -  {x}^{4} })  \\ comparing \: both \: side \: we \: get x1 =  {x}^{2 }  \\ and \: y1 = x \\ so \: we \: can \: write \\ y =  {sin}^{ - 1}  {x}^{2}  +  {sin}^{ - 1}x =  {sin}^{ - 1} ( {x}^{2} \sqrt{1 -  {x}^{2}  } + x \sqrt{1 -  {x}^{4} }    \\ now \: we \: know \\  {sin}^{ - 1} x = \frac{1}{ \sqrt{1 -  {x}^{2} } }  \\ so \:  \\  \frac{dy}{dx}  =  \frac{1}{ \sqrt{1 -  {x}^{4} } }.2x +  \frac{1}{ \sqrt{1 -  {x}^{2} } }  \\  \frac{dy}{dx} =  \frac{2x}{ \sqrt{1 -  {x}^{4} } } +  \frac{1}{ \sqrt{1 -  {x}^{2} } }

Similar questions