Math, asked by supriyapujahari4, 3 months ago

Hola Brainlians. Here's a question to check your Trigonometric skill. ICSE Board : Trigonometry, Class 10. Give answer fast and no spam.

Proof the given identity.

[tan/(1 - cotx)] + [cot/(1 - tanx)] = 1 + secxcosecx

Spammers stay away. No spam. Give best answer. Mods and stars answer.​

Answers

Answered by IdyllicAurora
12

Concept :-

Here the concept of Trigonometric Identities has been used. We see that we are given an equation where we need to prove that if L.H.S. is equal to R.H.S. So firstly here we shall simplify L.H.S. and then try to bring L.H.S. in the form of R.H.S. In doing so, we shall use different algebraic and trignometric identities. Then we will apply formula and thus prove the given equation.

Let's do it !!

_____________________________________

Solution :-

Given to prove,

\;\bf{\mapsto\;\;\red{\bigg[\dfrac{\tan x}{(1\:-\:\cot x)}\bigg]\;+\;\bigg[\dfrac{\cot x}{(1\:-\:\tan x)}\bigg]\;=\;1\:+\:\sec x\cosec x}}

This is the appropriate qúestion.

From this we get,

\;\sf{\leadsto\;\;\green{L.H.S.\;=\;\bigg[\dfrac{\tan x}{(1\:-\:\cot x)}\bigg]\;+\;\bigg[\dfrac{\cot x}{(1\:-\:\tan x)}\bigg]}}

\;\sf{\leadsto\;\;\blue{R.H.S.\;=\;1\:+\:\sec x\cosec x}}

Now let's begin simplification of L.H.S.

So,

\;\tt{\rightarrow\;\;L.H.S.\;=\;\bigg[\dfrac{\tan x}{(1\:-\:\cot x)}\bigg]\;+\;\bigg[\dfrac{\cot x}{(1\:-\:\tan x)}\bigg]}

We know that,

  • tan A = (sin A)/(cos A)

  • cot A = (cos A)/(sin A)

Here A = x

By applying this, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\bigg[\dfrac{\dfrac{\sin x}{\cos x}}{\bigg(1\:-\:\dfrac{\cos x}{\sin x}\bigg)}\bigg]\;+\;\bigg[\dfrac{\dfrac{\cos x}{\sin x}}{\bigg(1\:-\:\dfrac{\sin x}{\cos x}\bigg)}\bigg]}

\;\tt{\rightarrow\;\;L.H.S.\;=\;\bigg[\dfrac{\dfrac{\sin x}{\cos x}}{\dfrac{\sin x\:-\:\cos x}{\sin x}}\bigg]\;+\;\bigg[\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\cos x\:-\:\sin x}{\cos x}}\bigg]}

Now by changing sign, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\bigg[\dfrac{\dfrac{\sin x}{\cos x}}{\dfrac{\sin x\:-\:\cos x}{\sin x}}\bigg]\;-\;\bigg[\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\sin x\:-\:\cos x}{\cos x}}\bigg]}

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{\sin^{2}x}{(\cos x)(\sin x\:-\:\cos x)}\:-\:\dfrac{\cos^{2}x}{(\sin x)(\sin x\:-\:\cos x)}}

Now let's take the terms common.

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{1}{(\sin x\:-\:\cos x)}\bigg[\dfrac{\sin^{2}x}{\cos x}\:-\:\dfrac{\cos^{2}x}{\sin x}\bigg]}

Now taking the L.C.M. of the fraction, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{1}{(\sin x\:-\:\cos x)}\bigg[\dfrac{\sin^{3}x\:-\:\cos^{3}x}{\cos x\sin x}\bigg]}

We know that,

  • - = (a - b)( + + 2ab)

Here a = sin³ x and b = cos³ x

By applying this identity, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{1}{(\sin x\:-\:\cos x)}\bigg[\dfrac{(\sin x\:-\:\cos x)(\sin^{2}x\:+\:cos^{2}x\:+\:\sin x\cos x)}{\cos x\sin x}\bigg]}

We know that,

  • sin² A + cos² A = 0

Here A = x

By applying this, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{1}{(\sin x\:-\:\cos x)}\bigg[\dfrac{(\sin x\:-\:\cos x)(1\:+\:\sin x\cos x)}{\cos x\sin x}\bigg]}

Now on opening the bracket, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{(\sin x\:-\:\cos x)(1\:+\:\sin x\cos x)}{(\sin x\:-\:\cos x)(\cos x\sin x)}}

On cancelling the like terms from numerator and denominator, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{(1\:+\:\sin x\cos x)}{(\cos x\sin x)}}

Now this fraction can be written as,

\;\tt{\rightarrow\;\;L.H.S.\;=\;\dfrac{1}{\sin x\cos x}\;+\;\dfrac{\sin x\cos x}{\sin x\cos x}}

We know that,

  • sec A = 1/(cos A)

  • cosec A = 1/(sin A)

By applying these here, we get

\;\tt{\rightarrow\;\;L.H.S.\;=\;\sec x\:cosec\:x\;+\;1}

\;\bf{\rightarrow\;\;\orange{L.H.S.\;=\;1\;+\;\sec x\:cosec\:x}}

Clearly, L.H.S. = R.H.S.

So,

\;\bf{\rightarrow\;\;\purple{R.H.S.\;=\;L.H.S.\;=\;1\;+\;\sec x\:cosec\:x}}

________________________________

More to know :-

sec² A = 1 + tan² A

cosec A = 1 + cot² A

sin A = cos(90° - A)

cosec A = sec(90° - A)

tan A = cot(90° - A)

Similar questions