Math, asked by snehaprajnaindia204, 4 months ago

꧁ HOLA BRAINLIANS ꧂
꧁ Qᴜᴇsᴛɪᴏɴ ꧂

\frac{lim}{x - > 0} \: \: \frac{cos \: ax \: - \: cos \: bx}{cos \: cx \: - \: cos \: dx}



__
SOLVE IT PLEASE ​

Attachments:

IND21: hi miss cutie pie

Answers

Answered by StormEyes
15

\sf \Large Solution!!

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{\cos ax-\cos bx}{\cos cx-\cos dx}

\sf \large As\:we\:know

\sf \to \cos A-\cos B=-2\sin (\dfrac{A+B}{2})\sin (\dfrac{A-B}{2})

\sf \large So,

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{-2\sin (\dfrac{a+b}{2}x)\sin (\dfrac{a-b}{2}x)}{-2\sin (\dfrac{c+d}{2}x)\sin (\dfrac{c-d}{2}x)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{\dfrac{\sin (\dfrac{a+b}{2}x)}{(\dfrac{a+b}{2}x)}\times (\dfrac{a+b}{2}x)\times \dfrac{\sin (\dfrac{a-b}{2}x)}{(\dfrac{a-b}{2}x)}\times (\dfrac{a-b}{2}x)}{\dfrac{\sin (\dfrac{a+b}{2}x)}{(\dfrac{c+d}{2}x)}\times (\dfrac{c+d}{2}x)\times \dfrac{\sin (\dfrac{c-d}{2}x)}{(\dfrac{c-d}{2}x)}\times (\dfrac{c-d}{2}x)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(1)(\dfrac{a+b}{2})(\dfrac{a-b}{2})(1)}{(1)(\dfrac{c+d}{2})(1)(\dfrac{c-d}{2})}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(a+b)(a-b)}{4}\times \dfrac{4}{(c+d)(c-d)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{(a+b)(a-b)}{(c+d)(c-d)}

\sf \to \displaystyle \lim _{x\to 0}\;\dfrac{a^{2}-b^{2}}{c^{2}-d^{2}}

\sf \therefore \displaystyle \lim _{x\to 0}\;\dfrac{\cos ax-\cos bx}{\cos cx-\cos dx}=\dfrac{a^{2}-b^{2}}{c^{2}-d^{2}}

Thanks for asking!! :)


snehaprajnaindia204: Really really thanks
StormEyes: The errors are rectified. Thanks.
Answered by Anonymous
9

Step-by-step explanation:

\frac{lim}{x - > 0} \: \: \frac{cos \: ax \: - \: cos \: bx}{cos \: cx \: - \: cos \: dx}

Attachments:
Similar questions