Math, asked by guptaananya2005, 1 day ago

Hola Brainllians

if \:  \alpha  \: and \:  \beta  \: are \: roots \: of \:  {x}^{2}  + x + 1 = 0

then form an equation whose roots are

 { \alpha }^{14}  +  { \beta }^{11}  \: and \:  { \alpha }^{11}  +  { \beta }^{14}

Don't spam please.

If you don't know, then don't try. ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \:  {x}^{2} + x + 1 = 0}

So, using Quadratic formula, we have

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2}  - 4(1)(1)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \: i \sqrt{3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}  \:  \: or \:  \:  \dfrac{ - 1 \:   -  \: i \sqrt{3} }{2}

\bf\implies \:x \:  =  \:  \omega \:  \: or \:  \:  {\omega }^{2}

So, it implies,

\rm \implies\: \alpha  = \omega

and

\rm \implies\: \beta  =  {\omega }^{2}

Now, Consider

\red{\rm :\longmapsto\: { \alpha }^{14} +  { \beta }^{11}}

\rm \:  =  \:  {\omega }^{14} +  {( {\omega }^{2} )}^{11}

\rm \:  =  \:  {\omega }^{12 + 2} +  {\omega }^{22}

\rm \:  =  \:  {\omega }^{12}  \times  {\omega }^{2} +  {\omega }^{21} \times \omega

\rm \:  =  \:  {\omega }^{2} + \omega

\rm \:  =  \:  - 1

Now, Consider

\red{\rm :\longmapsto\: { \alpha }^{11} +  { \beta }^{14}}

\rm \:  =  \:  {\omega }^{11} +  {( {\omega }^{2}) }^{14}

\rm \:  =  \:  {\omega }^{9 + 2} +  {\omega }^{28}

\rm \:  =  \:  {\omega }^{9} \times  {\omega }^{2}   +  {\omega }^{27} \times \omega

\rm \:  =  \:  {\omega }^{2} + \omega

\rm \:  =  \:  - 1

Now, Consider

Sum of roots

\red{\rm :\longmapsto\: { \alpha }^{14} +  { \beta }^{11} +  { \alpha }^{11}  +  { \beta }^{14} }

\rm \:  =  \: ( - 1) + ( - 1)

\rm \:  =  \:  - 2

Product of roots

\red{\rm :\longmapsto\: { (\alpha }^{14} +  { \beta }^{11}) \times ({ \alpha }^{11}  +  { \beta }^{14} )}

\rm \:  =  \: ( - 1) \times ( - 1)

\rm \:  =  \: 1

So, Required Quadratic equation is

\red{\rm :\longmapsto\: {x}^{2} - (sum \: of \: roots)x + (product \: of \: roots) = 0}

\rm :\longmapsto\: {x}^{2} - ( - 2)x + 1 = 0

\rm :\longmapsto\: {x}^{2} + 2x + 1 = 0

\rm :\longmapsto\: {(x + 1)}^{2} = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{\tt{  {\omega }^{3} = 1 \: }}

\boxed{\tt{ 1 + \omega  +  {\omega }^{2} = 0 \: }}

Similar questions