Math, asked by TANU81, 1 year ago

Hola friends !!

Kindly provide correct answer.

Don't spam#

Attachments:

Answers

Answered by Anonymous
6
hey mate
here's the solution
Attachments:

TANU81: Thanks a lot :)
Answered by Grimmjow
9

Given : Secθ - Tanθ = x ---------- [1]

Multiplying Both Sides with (Secθ + Tanθ)

⇒ (Secθ - Tanθ)(Secθ + Tanθ) = (x)(Secθ + Tanθ)

⇒ Sec²θ - Tan²θ = (x)(Secθ + Tanθ)

We know that : Sec²θ - Tan²θ = 1

⇒ (x)(Secθ + Tanθ) = 1

⇒ (Secθ + Tanθ) = \frac{1}{x} ---------------- [2]

Now Adding Both Equation [1] and Equation [2], We get :

⇒ (Secθ - Tanθ) + (Secθ + Tanθ) = (x + \frac{1}{x})

⇒ 2Secθ = (x + \frac{1}{x})

⇒ Secθ = \frac{1}{2}(x + \frac{1}{x})

Subtracting Equation [1] from Equation [2], We get :

⇒ (Secθ + Tanθ) - (Secθ - Tanθ) = (\frac{1}{x} - x)

⇒ 2Tanθ = (\frac{1}{x} - x)

⇒ Tanθ = \frac{1}{2}( \frac{1}{x} - x)


TANU81: Thanks a lot :)
Similar questions