Math, asked by Anonymous, 1 year ago

------------HOLA MATES ------------------

____________________________________

Given
 \sqrt{2}  = 1.414 \: and \:  \sqrt{6}  = 2.449. \\ find \: the \: value \: of \:  \\  \frac{1}{ \sqrt{3} -  \sqrt{2} - 1  } . \\ correct \: up \: to \: 3 \: decimal \: places
_______________________________________

DON'T SPAM ❌ ❌

ANSWER MUST BE STEP BY STEP ✔ ✔

Answers

Answered by Anonymous
9
Hello Angel☺☺

Refer to the attachment for the solution.

Be Happy❤
Attachments:

Anonymous: dm?
Anonymous: bhai it's you!
Anonymous: dm?
Answered by Anonymous
4
\huge{Hello Friend}

The answer of u r question is..✌️✌️

Ans:✍️✍️✍️✍️✍️


Given,

 \sqrt{2}  = 1.414 \: and \:  \sqrt{6}  = 2.499


 \frac{1}{ \sqrt{3}  -  \sqrt{2} - 1 }

 =  \frac{1}{ \sqrt{3}  -  \sqrt{2}  - 1}  \times  \frac{ \sqrt{3} -  \sqrt{2} - 1  }{ \sqrt{3}  -  \sqrt{2}  \times 1}


 =  \frac{ \sqrt{3 } + (  \sqrt{2}  + 1)}{3 -  {( \sqrt{2} + 1) }^{2} }


 =  \frac{ \sqrt{3}  +  \sqrt{2}  + 1}{3 - 3 -  \sqrt[2]{2} }


 \frac{ \sqrt{3} +  \sqrt{2}  + 1 }{ \sqrt[2]{2} }

 =  \frac{( \sqrt{3}  +  \sqrt{2}  + 1)}{ \sqrt[2]{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }

 =  \frac{ \sqrt{3}  +  \sqrt{2}  +  \sqrt{2} }{ - 4}

 =  \frac{ - 1}{4} ( \sqrt{3}  +  \sqrt{2}  +  \sqrt{2} )

 =  \frac{ - 1}{4} (2.449 + 1 .414 + 2)

 =  \frac{ - 1}{4} (5.063)

 =  \frac{ - (5.063)}{4}

 =   - 1.466


Thank you..⭐️⭐️

Anonymous: tnq thrisha didu ❤❤
Anonymous: clap! clap!
Similar questions