Math, asked by Asha73, 10 months ago

Hola❤


plzz solve it guys..if u are really a genius ✌

Attachments:

Answers

Answered by Anonymous
10

Answer:

Given:-

  • y =  { \sin }^{ - 1} ( \frac{2x}{1 +  { \times }^{2} } )

To find:-

  • dy/dx

Find:-

let \: x \:  =  \tan( \alpha )  =  >  \alpha  =  { \tan}^{ - 1} x

y =  { \sin }^{ - 1}( \frac{2 \tan\alpha }{1 +  { \tan }^{2} \alpha  }  ) \\ y =  { \sin }^{ - 1} ( \sin2 \alpha ) \\ y = 2 \alpha  = 2 { \tan }^{ - 1} x \\  \frac{dy}{dx}  =   \frac{d( {2 \tan }^{ - 1} x ) }{dx}  = 2 \frac{d( { \tan }^{ - 1} x ) }{ dx}  \\  \frac{dy}{dx}  =  \frac{2}{1  +  {x}^{2} }

Hope its help uh

Answered by BrainlyPopularman
8

Question :

 \\ { \bold{find \:  \:  \:  \dfrac{dy}{dx}  \:  \:  \:  \: if \:  \: y \:  =  \sin {}^{ - 1} ( \dfrac{2x}{1 +  {x}^{2} } ) }} \\

ANSWER :

GIVEN :

  \\ \:  \: { \huge{.}} { \bold{ \:  \:  A \:  \: function \:  \: y \:  =  \sin {}^{ - 1} ( \dfrac{2x}{1 +  {x}^{2} } ) }} \\

TO FIND :

 \\ \: \: { \huge{.}}{ \bold{  \:  \:  \dfrac{dy}{dx}  \:  \:   =  ?}} \\

SOLUTION :

• First we have solve the function –

  \\ \implies{ \bold{  \:  \: y \:  =  \sin {}^{ - 1}  \left( \dfrac{2x}{1 +  {x}^{2} }  \right) }} \\

• Now put x = tan(t)

  \\ \implies{ \bold{  \:  \: y \:  =  \sin {}^{ - 1}  \left[ \dfrac{2 \tan(t)}{1 +  { \tan}^{2} (t)}  \right] }} \\

  \\ \implies{ \bold{  \:  \: y \:  =  \sin {}^{ - 1}  [ \sin(2t)] \:  \:  \:  \:  \:   \left[  \:   \because \: \:  \sin(2 \theta) =  \dfrac{2 \tan( \theta) }{1 +  { \tan}^{2}( \theta) }    \right]}} \\

  \\ \implies{ \bold{  \:  \: y \:  =  2t }} \\

• Now replace 't'

  \\ \implies{ \bold{  \:  \: y \:  =  2 \tan ^{ - 1} (x) }} \\

• Now Differentiate with respect to 'x'

  \\ \implies{ \bold{  \:  \:  \dfrac{dy}{dx}  \:  =  2  \left(  \dfrac{1}{1 +  {x}^{2} } \right) }} \\

  \\ \implies \large{ \boxed{ \bold{   \dfrac{dy}{dx}  \:  =   \dfrac{2}{1 +  {x}^{2} }  }}} \\

Used formula :

  \\  \longrightarrow \: { \bold{  \:   \dfrac{d[ { \tan}^{ - 1}(x)]}{dx}  \:  =    \dfrac{1}{1 +  {x}^{2} }  }} \\

Similar questions