Math, asked by Asha73, 10 months ago

Hola❤

plzzz solve it..it's urgent ​

Attachments:

Answers

Answered by artistvikash1
1

Answer:

wait a min

answer is in attachments

hope u get is

Attachments:
Answered by BrainlyPopularman
12

Question :

 \\ { \bold{if \:  \: A =  \begin{bmatrix} \cos( \alpha )& \sin( \alpha ) \\  \\   -  \sin( \alpha )& \cos( \alpha )  \end{bmatrix}  \:  \: then \:  \: Prove \:  \: that \: A'A = I }} \\

ANSWER :

GIVEN :–

 \\ { \bold{ \to \: A \:  \: matrix \: \: is \:  \: A =  \begin{bmatrix} \cos( \alpha )& \sin( \alpha ) \\  \\   -  \sin( \alpha )& \cos( \alpha )  \end{bmatrix}  \:  \: }} \\

TO PROVE :

 \\ { \bold{ \to  \: A'A = I}}

SOLUTION :

 \\ { \bold{ \implies \:  \: A =  \begin{bmatrix} \cos( \alpha )& \sin( \alpha ) \\  \\   -  \sin( \alpha )& \cos( \alpha )  \end{bmatrix}  \:  \: }} \\

• Let's find A' matrix –

 \\ { \bold{ \implies \:  \: A' =  \begin{bmatrix} \cos( \alpha )&  -  \sin( \alpha ) \\  \\     \sin( \alpha )& \cos( \alpha )  \end{bmatrix}  \:  \: }} \\

• Now Let's take L.H.S. –

 \\ { \bold{   \:  \: =  \: A'A }}

 \\ { \bold{   \:  \: =  \:  \begin{bmatrix} \cos( \alpha )&  -  \sin( \alpha ) \\  \\     \sin( \alpha )& \cos( \alpha )  \end{bmatrix} \begin{bmatrix} \cos( \alpha )& \sin( \alpha ) \\  \\   -  \sin( \alpha )& \cos( \alpha )  \end{bmatrix}   }} \\

• Now multiply –

 \\ { \bold{  \:  \:    =  \begin{bmatrix} \cos {}^{2} ( \alpha ) -  \{ -   \sin {}^{2} ( \alpha )  \}  &  \cos( \alpha )  \sin( \alpha )  -  \sin( \alpha ) \cos( \alpha )  \\  \\     \sin( \alpha ) \cos( \alpha ) -  \cos( \alpha )  \sin( \alpha )  & \sin {}^{2}  ( \alpha )   + \cos {}^{2} ( \alpha )  \end{bmatrix}  \:  \: }} \\

• We should write this as –

 \\ { \bold{  \:  \:    =  \begin{bmatrix} \cos {}^{2} ( \alpha )    +  \sin {}^{2} ( \alpha )   &  \cos( \alpha )  \sin( \alpha )  -  \cos( \alpha )  \sin( \alpha )  \\  \\     \sin( \alpha ) \cos( \alpha ) -  \sin( \alpha )  \cos( \alpha )   & \sin {}^{2}  ( \alpha )   + \cos {}^{2} ( \alpha )  \end{bmatrix}  \:  \: }} \\

• We know that –

 \\ { \bold{   \:  \longrightarrow \:   \sin {}^{2} ( \alpha ) +  \cos {}^{2} ( \alpha )  = 1 }} \\

• So that –

 \\ { \bold{  \:  \:    =  \begin{bmatrix} 1   &  0  \\   \\     0   & 1  \end{bmatrix}  \:  \: }} \\

 \\ { \bold{  \:  \:    =  \:  I   \:  \:  \:  \:  \:  \:  \: ( Identity  \:  \:  \:  \:  \:  matrix)}} \\

 \\ { \bold{  \:  \:    =  \:  R.H.S. \:  \:  \:  \:  \:  \:  \: (Hence \:  \:  \:  \:  \:  proved)}} \\

Similar questions