HOLA!!! ✌
URGENT___ NO SPAMMING___
if the coordinates of two points A and B are 3,4 and 5,-2 respectively, find the coordinates of any point P, if PA=PB and area of triangle PAB= 10.
Yashodhanhakke:
R the points A,B nd P colinear???
Answers
Answered by
8
The coordinates of points A and B are (3, 4) and (5, –2).
Let the coordinates of the point P be (a, b)
Then
PA=UNDER ROOT (a-3)^2+(b-4)^2
PB=under root (a-5)^2 +(b+2)^2
According to the question
PA = PB
On squaring both sides, we get
(a – 3)2 + (b – 4)2 = (a – 5)2 + (b + 2)2
⇒ a2 + 9 – 6a + b2 + 16 – 8b = a2 + 25 – 10a + b2 + 4 + 4b
⇒ 9 – 6a + 16 – 8b – (25 – 10a + 4 + 4b) = 0
⇒ 9 – 6a + 16 – 8b – 25 + 10a – 4 – 4b = 0
⇒ 4a – 12b – 4 = 0
⇒ a – 3b – 1 = 0
⇒ a – 3b = 1 ...(1)
Now, area of ∆PAB = 10 sq units⇒12|x1(y2−y3) + x2(y3−y1) + x3(y1−y2)| = 10⇒|a(4 + 2) + 3(−2 − b) + 5(b − 4)| = 20⇒|6a − 6 − 3b + 5b − 20| = 20⇒|6a+2b−26| = 20⇒6a + 2b − 26 = 20 or 6a + 2b − 26 = −20⇒6a + 2b = 46 or 6a + 2b = 6⇒3a + b = 23 .....(2) or 3a + b = 3 .....(3)SOLUTION OF (1) AND (2) :Multiply (2) by 3, we get9a + 3b = 69 .....(4)Adding (1) and (4), we get10a = 70 ⇒a = 7Put a = 7 in (1), we get7 − 3b = 1 ⇒−3b = −6 ⇒ b = 2So, (a,b) = (7,2)SOLUTION OF (1) AND (3) :Multiply (3) by 3, we get9a + 3b = 9 ....(5)Adding (1) and (5), we get10a = 10 ⇒ a = 1Put a = 1 in (1), we get1 − 3b = 1⇒b = 0So, (a,b) = (1, 0)So, coordinates of P are either (7, 2) or (1, 0).
Hope this helps u...
Let the coordinates of the point P be (a, b)
Then
PA=UNDER ROOT (a-3)^2+(b-4)^2
PB=under root (a-5)^2 +(b+2)^2
According to the question
PA = PB
On squaring both sides, we get
(a – 3)2 + (b – 4)2 = (a – 5)2 + (b + 2)2
⇒ a2 + 9 – 6a + b2 + 16 – 8b = a2 + 25 – 10a + b2 + 4 + 4b
⇒ 9 – 6a + 16 – 8b – (25 – 10a + 4 + 4b) = 0
⇒ 9 – 6a + 16 – 8b – 25 + 10a – 4 – 4b = 0
⇒ 4a – 12b – 4 = 0
⇒ a – 3b – 1 = 0
⇒ a – 3b = 1 ...(1)
Now, area of ∆PAB = 10 sq units⇒12|x1(y2−y3) + x2(y3−y1) + x3(y1−y2)| = 10⇒|a(4 + 2) + 3(−2 − b) + 5(b − 4)| = 20⇒|6a − 6 − 3b + 5b − 20| = 20⇒|6a+2b−26| = 20⇒6a + 2b − 26 = 20 or 6a + 2b − 26 = −20⇒6a + 2b = 46 or 6a + 2b = 6⇒3a + b = 23 .....(2) or 3a + b = 3 .....(3)SOLUTION OF (1) AND (2) :Multiply (2) by 3, we get9a + 3b = 69 .....(4)Adding (1) and (4), we get10a = 70 ⇒a = 7Put a = 7 in (1), we get7 − 3b = 1 ⇒−3b = −6 ⇒ b = 2So, (a,b) = (7,2)SOLUTION OF (1) AND (3) :Multiply (3) by 3, we get9a + 3b = 9 ....(5)Adding (1) and (5), we get10a = 10 ⇒ a = 1Put a = 1 in (1), we get1 − 3b = 1⇒b = 0So, (a,b) = (1, 0)So, coordinates of P are either (7, 2) or (1, 0).
Hope this helps u...
Similar questions