how can I integrate cosec x dx
Answers
Answer:
log | Cosecx - Cotx | + C
Step-by-step explanation:
To find ---> Intregation of cosecx
Solution---> We have some formulee , which we used in calculating given intregation,
1) d/dx ( Cosecx ) = - Cosecx Cotx
2) d/dx ( Cotx ) = - Cosec²x
3) ∫ 1 / x dx = logx + C
Now returning to original problem,
∫ Cosecx dx
Multiplying and dividing by ( Cosecx - Cotx ) , we get,
= ∫ Cosecx ( Cosecx - Cotx ) dx / (Cosec x - Cotx )
= ∫(Cosec²x - Cosecx Cotx) dx / ( Cosecx - Cotx )
Let, ( Cosec x - Cotx ) = t
Differentiating with respect to x , both sides , we get,
=> d/dx ( Cosecx - Cotx ) = dt
=> { - Cosecx Cotx - (- Cosec²x ) } dx = dt
=> ( - Cosecx Cotx + Cosec²x ) dx = dt
=> ( Cosec²x - Cosecx Cotx ) dx = dt
Now
∫ dt / t
= log | t | + C
Putting value of t , we get,
= log |Cosecx - Cotx | + C
#Answerwithquality&#BAL
log |cosecx-cotx| +c
#answerwithquality #bal