Math, asked by afafh, 7 months ago

how can i prove that cos(x+y).cos(x-y)=cos^2(x)+cos^2(y)-1

Answers

Answered by sakshithreddy28
0

Step-by-step explanation:

xbsusisvvsbaoajabbsjsbsvshsu s syzgacacagava ysvs

Answered by Anonymous
0

Answer:

Step-by-step explanation:

C=cos^2(x)+cos^2(y)-1

LHS = cos(x+y).cos(x-y)

=( cosxcosy-sinxsiny) ( cosxcosy + sinxsiny)

=cos²xcos²y - sin²x sin²y

=cos²xcos²y -(1-cos²x)-(1-cos²y)

=cos²xcos²y -( 1-cos²y-cos²x+cos²ycos²x)

=cos²xcos²y-1+cos²y+cos²x-cos²xcos²y

=cos²x+cos²y-1=RHS

=(1-sin²x)(cos²y) - ( 1-cos²x)(sin²y)

=cos²y-sin²xcos²y-sin²y+cos²xsin²y

=cos²y-sin²y-sin²xcos²y+cos²sin²y

=cos²y-sin²y-

Similar questions