Math, asked by m7aggyykalpa1n, 1 year ago

How can we factorise 1+a+b+c+ab+bc+ca+abc

Answers

Answered by suman19
43
(1+a)+b(1+a)+c(1+a) +bc(1+a)
or(1+a)(1+b+c+bc)
or(1+a){(1+b)+c(1+b)}
or(1+a)(1+b)(1+c)
Answered by hotelcalifornia
12

Answer:

The factorization of 1+a+b+c+ab+bc+ca+abc gives ( 1 + a ) ( 1 + b ) ( 1 + c )

To factorize:

1+a+b+c+ab+bc+ca+abc

Solution:

Given expression is,

1+a+b+c+ab+bc+ca+abc

To factorise the terms,  

First, rearranging the expression1+a+b+c+ab+bc+ca+abc,  

We get,

\begin{aligned} = & 1 + c + a + c a + b + b c + a b + a b c \\\\ = & 1 ( 1 + c ) + a ( 1 + c ) + b ( 1 + c ) + a b ( 1 + c ) \\\\ & = ( 1 + c ) ( 1 + a + b + a b ) \\\\ = & ( 1 + c ) \{ 1 ( 1 + a ) + b ( 1 + a ) \} \\\\ & = ( 1 + c ) \{ ( 1 + a ) ( 1 + b ) \} \\\\ & = ( 1 + a ) ( 1 + b ) ( 1 + c ) \end{aligned}

Thus, the factorisation of 1+a+b+c+ab+bc+ca+abc gives out the terms (1+a)(1+b)(1+c)

Similar questions