Science, asked by hs7992434gmailcom, 8 months ago

how can you identify different types of solids. answer in brief ​

Answers

Answered by jennia
0

hi dude!!!

You may not think of salt and sugar as solids because when you see them in the kitchen they are such small particles. But each of these particles is as much a solid as a wooden table, a glass window, or a gold piece of jewelry. A solid is a collection of atoms or molecules that are held together so that, under constant conditions, they maintain a defined shape and size. Solids, of course, are not necessarily permanent. Solid ice can melt to form liquid water at room temperature, and extremely high temperatures can be used to melt solid iron so it can be shaped into a skillet, for example. Once that skillet is formed and cools back to room temperature, though, its shape and size will not change on its own, as opposed to molten metal, which can be made to drip and change shape by gravity and molds. The same is true for ice cubes that are kept in the freezer: Once they are formed, their size and shape doesn’t change. Solids have constant shape and size because they are formed when the attractive forces between individual atoms or molecules are greater than the energy causing them to move apart. In other words, the atoms or molecules don’t have enough energy to move and are stuck together in whatever shape they were in when they lost the energy to separate. (See our States of Matter module for more about how solids differ from other states of matter.)

Salt and sugar are both crystalline solids. The other main category of solids is called amorphous. While crystalline solids are well ordered at the atomic level, with each atom or molecule inhabiting a specific point on a lattice, amorphous solids are disordered at an atomic level, with the atoms or molecules held together in a completely random formation. Consider a game of checkers. A board carefully set up with a checker in each square is analogous to a crystalline solid, while an amorphous solid could be represented as a checker pieces randomly scattered across the board.

Quartz and glass are atomic-level examples of these two categories of solids. Quartz is a crystalline solid containing a high silicate (SiO2) content. If we were to examine the structure of quartz, we could see that the silicate subunits are arranged very precisely (see Figure 4). Glass, on the other hand, is an amorphous solid. Although its typical smooth, transparent appearance may make it seem like it must have a neat, organized microscopic structure, the opposite is true: The silicate units are unevenly scattered throughout the solid in a completely disordered fashion.

Like quartz, glass has a very high silicate (SiO2) content. (See our Defining Minerals and The Silicate Minerals modules for more about silicates and quartz.) The crucial difference between crystalline and amorphous solids is not what they are made of, but how they are made, and more precisely how their structures are arranged. Quartz forms on a very slow, geological timescale so the atoms have time to achieve a highly ordered crystal structure, in which the atoms optimize the attractive forces and minimize the repulsive forces between them and which is therefore energetically favorable. Glass, on the other hand, is made by melting sand (among other methods) and letting it cool very quickly, “freezing” the atoms in place, resulting in a disordered amorphous solids. Amorphous solids are often formed when atoms and molecules are frozen in place before they have a chance to reach the crystalline arrangement, which would otherwise be the preferred structure because it is energetically favored.

One important consequence of the irregular structure of amorphous solids is that they don’t always behave consistently or uniformly. For example, they may melt over a wide range of temperatures, in contrast to a crystalline solid’s very precise melting point. Returning to the glass versus quartz example, the most prevalent type of glass, called soda lime glass, can melt anywhere between 550°C and 1450°C, while cristobalite, a quartz polymorph, melts precisely at 1713°C. In addition, amorphous solids break unpredictably and produce fragments with irregular, often curved surfaces, while crystalline solids break along specific planes and at specific angles defined by the crystal’s geometry. (See our Defining Minerals module for more about how a crystal’s external appearance reflects the regular arrangement of its atoms.)

hope it helps you....

plz mark me as brainliest...

Similar questions