How do I find the value of (x^4-6x^3-2x^2+18x+23) / (x^2-8x+15) when x=√ (19-8√3)?
Answers
Given : x = √(19 - 8√3)
To find : ( x⁴ - 6x³ - 2x² + 18x + 23 )/ (x² - 8x + 15 )
Solution:
x = √(19 - 8√3) = √(16 + 3 - 8√3) = √(4² + (√3)² - 2(4)√3))
=> x = √( 4 - √3)²
=> x = 4 - √3
x² = 19 - 8√3
x⁴ - 6x³ - 2x² + 18x + 23
= x²(x² - 2) - 6x(x² - 3) + 23
= (19 - 8√3 )(19 - 8√3 - 2) - 6(4 - √3)(19 - 8√3 - 3) + 23
= (19 - 8√3 )(17 - 8√3) - 6(4 - √3)(16 - 8√3) + 23
= 323 + 192 - 288√3 - 6(64 + 24 - 48√3) + 23
= 323 + 192 - 288√3 -528 + 288√3 + 23
= 538 - 528
= 10
x² - 8x + 15
= 19 - 8√3 - 8(4 - √3) + 15
= 19 - 8√3 - 32 + 8√3 + 15
= 2
( x⁴ - 6x³ - 2x² + 18x + 23 )/ (x² - 8x + 15 )
= 10/2
= 5
( x⁴ - 6x³ - 2x² + 18x + 23 )/ (x² - 8x + 15 ) = 5
Learn more:
Solve the following x+y/xy=5 and x-5/xy=7 - Brainly.in
https://brainly.in/question/8168066
4^x + 6^x = 9^x. Find the value of x
https://brainly.in/question/13718805
Answer:
yeah its 5
Step-by-step explanation:
I checked the calculation