Math, asked by chaturvedivirat4555, 1 year ago

How do you find 2 sqrt 325?

Answers

Answered by CEOEkanshNimbalkar
3

Answer : 10√13

Step by step explanation :

2 \sqrt{325}

Factor out the perfect square

 =  > 2 \sqrt{5 {}^{2} \times 13 }

The root of a product is equal to the product of the roots of each factor

 =  > 2 \sqrt{5 {}^{2} }  \sqrt{13}

Reduce the index of the radical and exponent with 2

 =  > 2 \times  |5|  \sqrt{13}

The absolute value of any number is always positive.

 =  > 2 \times 5 \sqrt{13}

Calculate the product by multiplying the numbers

 =  > 10 \sqrt{13}

ALTERNATIVE FORM

36.05551

Answered by Stylishboyyyyyyy
1
\large{\mathfrak{\underline{\underline{Answer:}}}}

\sf 2 \sqrt{325} = 10 \sqrt{13}

But, The perfect value is 36.05551.

____________________________________

\large{\mathfrak{\underline{\underline{Solution:}}}}

\sf{LCM \: of \: 325 = 5 × 5 × 13} \\ \\ \textsf{So,} \\ \sf \sqrt{325} = \sqrt{5^{2} \times 13} \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: = 5\sqrt{13} \\ \\ \sf 2 \sqrt{325} = 2 \times 5\sqrt{13} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \sf 10 \sqrt{13} \\ \\ \sf \large{\underline{ \underline{ Hence \: Proved!!!!!! }}}

____________________________________
Similar questions