How do you find the value of Csc(-8pi/6)?
Answers
Answered by
1
Answer:
Find the value of csc(−8π6)
Ans: 2√33
Explanation:
csc(−8π6)=csc(−4π3)=1sin(−4π3).
First, find sin(−4π3)
sin(−4π3)=sin(2π3)=√32 (co-terminal arcs).
csc(−4π3)=1sin=2√3=2√33
Check by calculator.
sin(−4π3)=sin(−240∘)=0.87
sin(−4π3)=√32=1.732=0.87. OK
Find the value of csc(−8π6)
Ans: 2√33
Explanation:
csc(−8π6)=csc(−4π3)=1sin(−4π3).
First, find sin(−4π3)
sin(−4π3)=sin(2π3)=√32 (co-terminal arcs).
csc(−4π3)=1sin=2√3=2√33
Check by calculator.
sin(−4π3)=sin(−240∘)=0.87
sin(−4π3)=√32=1.732=0.87. OK
Similar questions