How do you solve these ?
a) Prove that for all values of x : (cos^4)x - (sin^4)x = (cos^2)x - (sin^2)x
b) Given that 5(cos^2)x + 2(sin^2)x = 4, show that (tan^2)x = 1/2
Urgent help needed. Thank you very much ! :)
Answers
Answered by
0
a)
formula used
b)
formula
formula
formula used
b)
formula
formula
Answered by
0
a) Prove that for all values of x : (cos^4)x - (sin^4)x = (cos^2)x - (sin^2)x
LHS+(cos^4)x - (sin^4)x=(cos²x)² - (sin²x)²
=(cos²x+sin²x)(cos²x - sin²x)
=(1)(cos²x - sin²x) =cos²x - sin²x =RHS
b) Given that 5(cos^2)x + 2(sin^2)x = 4, show that (tan^2)x = 1/2
5cos²x + 2sin²x =4
→3cos²x+2cos²x+ 2sin²x=4
→ 3cos²x+2(cos²x+ sin²x)=4
→ 3cos²x+2=4 or 3cos²x=2
i.e cos²x=2/3
and sin²x=1−cos²x =1−(2/3)=1−2/3 =1/3
Hence tan²x=sin²x/cos²x =(1/3)/(2/3)=1/2
LHS+(cos^4)x - (sin^4)x=(cos²x)² - (sin²x)²
=(cos²x+sin²x)(cos²x - sin²x)
=(1)(cos²x - sin²x) =cos²x - sin²x =RHS
b) Given that 5(cos^2)x + 2(sin^2)x = 4, show that (tan^2)x = 1/2
5cos²x + 2sin²x =4
→3cos²x+2cos²x+ 2sin²x=4
→ 3cos²x+2(cos²x+ sin²x)=4
→ 3cos²x+2=4 or 3cos²x=2
i.e cos²x=2/3
and sin²x=1−cos²x =1−(2/3)=1−2/3 =1/3
Hence tan²x=sin²x/cos²x =(1/3)/(2/3)=1/2
Anonymous:
please note cos^2x=2/3
Similar questions