How does glycolysis result in a net gain of two ATP molecules?
Answers
Explanation:
This is an extremely important part of cellular respiration. It happens all the time, both with and without oxygen. And in the process, transfers some energy to ATP.
The first stage of cellular respiration is glycolysis. It does not require oxygen, and it does not take place in the mitochondrion - it takes place in the cytosol of the cytoplasm.
When was the last time you enjoyed yogurt on your breakfast cereal, or had a tetanus shot? These experiences may appear unconnected, but both relate to bacteria which do not use oxygen to make ATP. In fact, tetanus bacteria cannot survive if oxygen is present.
The word glycolysis means “glucose splitting,” which is exactly what happens in this stage. Enzymes split a molecule of glucose into two molecules of pyruvate (also known as pyruvic acid). This occurs in several steps
Energy is needed at the start of glycolysis to split the glucose molecule into two pyruvate molecules. These two molecules go on to stage II of cellular respiration. The energy to split glucose is provided by two molecules of ATP. As glycolysis proceeds, energy is released, and the energy is used to make four molecules of ATP. As a result, there is a net gain of two ATP molecules during glycolysis. During this stage, high-energy electrons are also transferred to molecules of NAD+ to produce two molecules of NADH, another energy-carrying molecule. NADH is used in stage III of cellular respiration to make more ATP.