Physics, asked by ayush68678945, 3 months ago

how does the width of a depletion region of a pn junction vary if dropping concentration is increased.

Answers

Answered by jishamanheri08
2

Explanation:

the depletion region, also called depletion layer, depletion zone, junction region, space charge region or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have been diffused away, or have been forced away by an electric field. The only elements left in the depletion region are ionized donor or acceptor impurities.

The depletion region is so named because it is formed from a conducting region by removal of all free charge carriers, leaving none to carry a current. Understanding the depletion region is key to explaining modern semiconductor electronics: diodes, bipolar junction transistors, field-effect transistors, and variable capacitance diodes all rely on depletion region phenomena.

Formation in a p–n junction Edit

Figure 1. Top: p–n junction before diffusion; Bottom: After equilibrium is reached

Figure 2. From Top to Bottom; Top: hole and electron concentrations through the junction; Second: charge densities; Third: electric field; Bottom: electric potential

Figure 3. A PN junction in forward bias mode, the depletion width decreases. Both p and n junctions are doped at a 1e15/cm3 doping level, leading to built-in potential of ~0.59V. Observe the different Quasi Fermi levels for conduction band and valence band in n and p regions (red curves).

A depletion region forms instantaneously across a p–n junction. It is most easily described when the junction is in thermal equilibrium or in a steady state: in both of these cases the properties of the system do not vary in time; they have been called dynamic

Similar questions