Science, asked by drrakshanda, 10 months ago

how dose bulb work?​

Answers

Answered by Anonymous
3

Answer:

The lightbulb has been shedding light in our homes and workplaces since the 1870s. and it’s been doing a sterling job considering the light it creates is a by-product of the chemical processes going on.

Essentially, the lightbulb is a very thin filament of hard-to-melt metal – tungsten, usually – encased in a glass bulb filled with inert gases so that the filament doesn’t oxidise and disintegrate. The electricity causes the wire to glow and a portion of that energy is turned into light.

But, it turns out, the lightbulb might have been more accurately called the ‘heatbulb’ – most of its energy gets turned into heat. Which is why the bulbs are being slowly phased out in favour of alternatives like LED lights

Explanation:

hope it will help you

mark me as Braillent ✌✌☺

Answered by bhaveshpandya7893
0

Atoms release light photons when their electrons become excited. If you've read How Atoms Work, then you know that electrons are the negatively charged particles that move around an atom's nucleus (which has a net positive charge). An atom's electrons have different levels of energy, depending on several factors, including their speed and distance from the nucleus. Electrons of different energy levels occupy different orbitals. Generally speaking, electrons with greater energy move in orbitals farther away from the nucleus. When an atom gains or loses energy, the change is expressed by the movement of electrons. When something passes energy on to an atom, an electron may be temporarily boosted to a higher orbital (farther away from the nucleus). The electron only holds this position for a tiny fraction of a second; almost immediately, it is drawn back toward the nucleus, to its original orbital. As it returns to its original orbital, the electron releases the extra energy in the form of a photon, in some cases a light photon.

Atoms release light photons when their electrons become excited. If you've read How Atoms Work, then you know that electrons are the negatively charged particles that move around an atom's nucleus (which has a net positive charge). An atom's electrons have different levels of energy, depending on several factors, including their speed and distance from the nucleus. Electrons of different energy levels occupy different orbitals. Generally speaking, electrons with greater energy move in orbitals farther away from the nucleus. When an atom gains or loses energy, the change is expressed by the movement of electrons. When something passes energy on to an atom, an electron may be temporarily boosted to a higher orbital (farther away from the nucleus). The electron only holds this position for a tiny fraction of a second; almost immediately, it is drawn back toward the nucleus, to its original orbital. As it returns to its original orbital, the electron releases the extra energy in the form of a photon, in some cases a light photon.The wavelength of the emitted light (which determines its color) depends on how much energy is released, which depends on the particular position of the electron. Consequently, different sorts of atoms will release different sorts of light photons. In other words, the color of the light is determined by what kind of atom is excited.

Atoms release light photons when their electrons become excited. If you've read How Atoms Work, then you know that electrons are the negatively charged particles that move around an atom's nucleus (which has a net positive charge). An atom's electrons have different levels of energy, depending on several factors, including their speed and distance from the nucleus. Electrons of different energy levels occupy different orbitals. Generally speaking, electrons with greater energy move in orbitals farther away from the nucleus. When an atom gains or loses energy, the change is expressed by the movement of electrons. When something passes energy on to an atom, an electron may be temporarily boosted to a higher orbital (farther away from the nucleus). The electron only holds this position for a tiny fraction of a second; almost immediately, it is drawn back toward the nucleus, to its original orbital. As it returns to its original orbital, the electron releases the extra energy in the form of a photon, in some cases a light photon.The wavelength of the emitted light (which determines its color) depends on how much energy is released, which depends on the particular position of the electron. Consequently, different sorts of atoms will release different sorts of light photons. In other words, the color of the light is determined by what kind of atom is excited.This is the basic mechanism at work in nearly all light sources.

Mark as branlist answer

Similar questions