Math, asked by shiji83jose, 5 months ago

how mamy terms of an AP 7,11,15,19,23,... must be taken to get the sum of 250​

Answers

Answered by aadya4836
0

Answer:

Let the number of terms be n

sum \: ofn \: numbers =  \frac{n}{2}  \times {2a  + (n - 1)d}

2

250 =  \frac{n}{2}  \times 2 \times 7 + (n - 1)4 \\  \\ 500 = n(14 + 4n - 4) \\  \\ 500 = 4 {n}^{2}   + 10 \\  \\  500  =  {4n}^{2}  + 10n \\  \\    {4n}^{2}   + 10n - 500 = 0 \\  \\ 4 {n}^{2}  + 50n - 40n - 500 = 0 \\  \\ 2n(2n  + 25) - 20(2n + 25) = 0 \\  \\ 2n - 20 = 0 \\ 2n + 25 = 0 \\ n = 10 \:  \: or \:  \: n \:  =  -  \frac{25}{2}

Since number of terms cant be negative n = 10

Answered by aryan073
6

Given :

• Sequence ➡ 7,11,15,19,23

• Sum of Ap=250

________________________________________

To Find :

• How many terms of an Ap=?

________________________________________

Formulas :

•For Finding Sum of Ap:

\\ \red\bigstar\boxed{\tt{S_{n}=\dfrac{n}{2}\bigg(2a+(n-1)d\bigg) }}

•For Finding number of terms :

\\ \red\bigstar\boxed{\tt{t_{n}=a+(n-1)d}}

________________________________________

Solution :

In a AP,

• First term(a)=7

•common difference (d) =11-7=4

•Sum of Ap=250

\\ \implies\sf{S_{n}=\dfrac{n}{2}\bigg\{ 2a+(n-1)d\bigg\}}

\\ \implies\sf{S_{n}=250}

\\ \implies\sf{250=\dfrac{n}{2}\bigg\{2(7)+(n-1)4\bigg\}}

\\ \implies\sf{250 \times 2=n\bigg(14+4n-4\bigg)}

\\ \implies\sf{500=n\bigg(10+4n\bigg)}

\\ \implies\sf{500=10n+4n^{2}}

\\ \implies\sf{500-10n-4n^{2}}

\\ \implies\sf{-4n^{2}-10n+500=0}

\\ \implies\sf{4n^{2}+10n-500=0}

\\ \implies\sf{2n^{2}+5n-250=0}

\\ \implies\underline{\tt{By \: using \: Formula \: method :}}

   \\  \implies \sf \: x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\   \\  \implies \sf \: x =  \frac{ - 5 \pm \sqrt{25 - 4(2)( - 250)} }{2 \times 2}  \\   \\  \\  \implies \sf \: x =  \frac{ - 5 \pm \sqrt{2025} }{4}  \\  \\  \\  \implies \sf \: x =   \frac{ - 5 \pm45}{4}  \\  \\  \\  \implies \sf \: x =  \frac{ - 5 + 45}{4}  \:  \:    \:  \quad \:  \: x =  \frac{ - 5 - 45}{4}  \\  \\  \\  \implies \sf \: x =  \frac{40}{4}  \:  \:  \quad \:  \:  \:  \: x =  \frac{ - 50}{4}  \\  \\  \\  \implies \sf  \:  \boxed{ \sf{x = 10}} \:  \:  \quad \:  \: \boxed{ \sf{x =  \frac{ - 25}{2} }}

•As we know that,

\\ \bf{\pink\bigstar \: Number \: of \: terms \: cannot \: be \: negative }

\\ \rm{So, \: \dfrac{-25}{2} \:  is  \: neglected }

 \therefore \underline{\tt { the \: number \: of \: terms \: is \boxed{10}}}

Similar questions