How many 2 × 2 matrices A satisfy both A 3 = I2 and A2 = At , where I2 denotes the 2 × 2 identity matrix and At denotes the transpose of A ?
Answers
Answered by
1
Answer:
Let A=[
a
c
b
d
] where a,b,c,d∈R
tr(A)=a+d
Now, A
2
=[
a
c
b
d
][
a
c
b
d
]
⇒A
2
=[
a
2
+bc
ac+cd
ab+bd
bc+d
2
]
Given A
2
=I
⇒[
a
2
+bc
ac+cd
ab+bd
bc+d
2
]=[
1
0
0
1
]
⇒a
2
+bc=1=bc+d
2
and ab+bd=0=ac+cd
Since, A
=I and A
=−I
⇒a=−d
So,a=
1−bc
and d=−
1−bc
Hence, A=[
1−bc
c
b
−
1−bc
]
⇒∣A∣=
∣
∣
∣
∣
∣
∣
1−bc
c
b
−
1−bc
∣
∣
∣
∣
∣
∣
⇒∣A∣=−1
Statement 1 is true.
Here, tr(A)=
1−bc
−
1−bc
=0
Answered by
0
Step-by-step explanation:
Let A=(
a
c
b
d
), abcd
=0
A
2
=(
a
c
b
d
)⋅(
a
c
b
d
)
A
2
=(
a
2
+bc
ac+cd
ab+bd
bc+d
2
)
=a
2
+ bc =1, bc +d
2
=1
ab+bd=ac+cd=0
c
=0 and b
=0=a+d=0
Trace A=a+d=0⇒a=−d
∣A∣=ad− bc =−a
2
− bc =−1
Hence, option 'B' is correct
Similar questions
Math,
24 days ago
Political Science,
24 days ago
Physics,
1 month ago
English,
1 month ago
Computer Science,
9 months ago
Art,
9 months ago