Math, asked by AdiBan6888, 11 months ago

How many numbers between 1 and 6042(inclusive) are relatively prime to 3780?

Answers

Answered by sahilbhai80790
0

Answer:

Maybe they wanted you to rewrite

6042=2⋅53⋅3⋅19=(105+1)(56+1)=23⋅3⋅5⋅72+105+56+1

6042=2⋅53⋅3⋅19=(105+1)(56+1)=23⋅3⋅5⋅72+105+56+1

It's easy to compute the numbers from 11 to N=23⋅3⋅5⋅72N=23⋅3⋅5⋅72 relatively prime to m=2⋅3⋅5⋅7m=2⋅3⋅5⋅7 via ϕ(m)Nm=22⋅2⋅4⋅6⋅7ϕ(m)Nm=22⋅2⋅4⋅6⋅7.

You now only have to count the ones from 11 to 105+56+1=162105+56+1=162 which are relatively prime to mm.

Answered by RvChaudharY50
0

[upper wale Bhai ne Jo copy Kiya hai, pehli baat to wo question ko samja he de Kya pucha hai]

\textbf{My solution} :-

6042 = 2*3*19*53

3780 = 2³*3*5*7²

now, (53*2) = 106

(19*3) = 57

हमे सिर्फ 1 से 105 तथा 1 से 56 तक के नंबर लेने है जो 3780 के रिलेटिव प्राइम होंगे ll ( क्यूंकि 6042 , 3780 के हर फैक्टर से divide ho rha hai )

Ans:- 106+56 = 162

\color{red}{Mark\: as\: Brainlist}

Similar questions