Math, asked by aniljency4690, 9 months ago

How many numbers between 70 and 5010 are divisible by 5

Answers

Answered by Anonymous
1

☯ GiveN :

  • A.P : 75, 80, 85, 90 ........ 5005
  • First term (a) = 75
  • Common Difference (d) = 5
  • Last term (An) = 5005

\rule{200}{1}

☯ To FinD :

We have to find the number of terms (n).

\rule{200}{1}

☯ SolutioN :

We know that,

\Large{\implies{\boxed{\boxed{\sf{A_n = a + (n - 1)d}}}}}

Putting Values

\sf{\dashrightarrow 5005 = 75 + (n - 1)5} \\ \\ \sf{\dashrightarrow 5005 = 75 + 5n - 5} \\ \\ \sf{\dashrightarrow 5005 = 70 + 5n} \\ \\ \sf{\dashrightarrow 5005 - 70 = 5n} \\ \\ \sf{\dashrightarrow 4935 = 5n} \\ \\ \sf{\dashrightarrow n = \frac{\cancel{4935}}{\cancel{5}}} \\ \\ \sf{\dashrightarrow n = 987} \\ \\ \Large{\implies{\boxed{\boxed{\sf{n = 987}}}}}

Answered by Saby123
0

 \Large{\leadsto{\purple{\boxed{\boxed{\sf{A_n = a + (n - 1)d}}}}}}

 \begin{lgathered}\sf{\dashrightarrow 5005 = 75 + (n - 1)5} \\ \\ \sf{\dashrightarrow 5005 = 75 + 5n - 5} \\ \\ \sf{\dashrightarrow 5005 = 70 + 5n} \\ \\ \sf{\dashrightarrow 5005 - 70 = 5n} \\ \\ \sf{\dashrightarrow 4935 = 5n} \\ \\ \sf{\dashrightarrow n = \frac{\cancel{4935}}{\cancel{5}}} \\ \\ \sf{\dashrightarrow n = 987} \\ \\ \Large{\mapsto{\orange{\boxed{\boxed{\sf{n = 987}}}}}}\end{lgathered}

Similar questions