Math, asked by harsh837220, 1 year ago

sin inverse dx/dy = (x+y)​

Answers

Answered by Swarup1998
12

The complete question is

Solve \mathsf{sin^{-1}(\frac{dx}{dy})=x+y}

Solution :

Now, \mathsf{sin^{-1}(\frac{dx}{dy})=x+y}

\mathsf{\frac{dx}{dy}=sin(x+y)} ...(i)

Let us take x + y = z

Differentiating both sides with respect to y, we get

\mathsf{\frac{dx}{dy}+1=\frac{dz}{dy}}

\mathsf{\frac{dx}{dy}=\frac{dz}{dy}-1}

From (i) no. equation, we get

\mathsf{\frac{dz}{dy}-1=sinz}

\mathsf{\frac{dz}{dy}=1+sinz}

\mathsf{\frac{dz}{1+sinz}=dy}

\mathsf{\frac{dz}{sin^{2}\frac{z}{2}+cos^{2}\frac{z}{2}+2sin\frac{z}{2}cos\frac{z}{2}}=dy}

since \mathsf{sin2A =2sin\frac{A}{2}cos\frac{A}{2}}

multiplying both the numerator and denominator of the LHS by \mathsf{sec^{2}\frac{z}{2}} , we get

\mathsf{\frac{sec^{2}\frac{z}{2}dz}{tan^{2}\frac{z}{2}+1+2tanz}=dy}

\mathsf{\frac{sec^{2}\frac{z}{2}dz}{(1+tan\frac{z}{2})^{2}}=dy} ...(ii)

Let us take \mathsf{1+tan\frac{z}{2}=q}

Taking differentials, we get

\mathsf{sec^{2}\frac{z}{2}dz=2dq}

From (ii), we get

\mathsf{2\frac{dq}{q^{2}}=dy}

On integration, we get

\mathsf{2\int \frac{dq}{q^{2}}=\int dy}

\mathsf{-\frac{2}{q}=y+c} ,

where c is integral constant

\mathsf{-\frac{2}{1+tan\frac{z}{2}}=y+c}

\boxed{\mathsf{-\frac{2}{1+tan(\frac{x+y}{2})}=y+c}} ,

which is the required solution of the given differential equation.

Similar questions