Math, asked by emantuti8062, 10 months ago

How many roots the quadratic equation (x^2+1)^2-x^2=0 has?

Answers

Answered by MausamMagar
1

Answer:

The equation is

(x^{2} +1)^{2} - x^{2} = 0

x^{4}+ 1^{2} +2x^{2}  - x^{2}  = 0

x^{4}+ 1^{2} + x^{2}  = 0

x^{4}+ x^{2}  = -1

x^{2}(x^{2} +1) = -1

x^{2} = -1,   (x^{2} +1) = -1

x  = - 1,    x^{2} +1= -1

x  = - 1,    x^{2} = -1-1

              x^{2} = -1-1

              x^{2} = -2

              x = - \sqrt{2}

The equation has four roots -1, 1, \sqrt{2} and  - \sqrt{2}

I hope it helped you.

thank you

Similar questions