Math, asked by rohankumarsahan80591, 1 year ago

How many silver coins ,1.75cm in diameter and of thickness 2mm, must be meltted to form a cuboid of dimensions 5.5cm*10cm*3.5cm?

Answers

Answered by Anonymous
7

GIVEN:-

For coin -

d = 1.75cm

r = \small\sf{\frac{1.75}{2}cm}

h= 2mm = 0.2cm

⠀⠀

\therefore No. of silver coins = \large\sf{\frac{Volume\:of\:Cuboid}{Volume\:of\:Coin}}

\implies\large\sf{\frac{5.5 \times 10 \times 3.5}{ \frac{22}{7} \times  \frac{1.75}{2}  \times  \frac{1.75}{2}   \times 0.2}}

\implies\large\sf{\frac{5.5 \times 10 \times 3.5 \times 7 \times 2}{2.2 \times 1.75 \times 1.75}}

\implies\large\sf{\frac{5.5 \times 10 \times 350 \times 700 \times 2}{2.2 \times 175 \times 175}}

\implies\large\sf{400coins}

Answered by VelvetBlush
7

For a coin : \sf{r=\frac{175}{200}=\frac{7}{8}cm,h=2mm=\frac{2}{10}cm}

Let n be the number of coins. Then,

n × Volume of one coin = Volume of a cuboid

= \sf{n×π{r}^{2}h=l×b×h}

= \sf{n \times  \frac{22}{7}  \times  \frac{7}{8}  \times  \frac{7}{8}  \times  \frac{2}{10}  = 5.5 \times 10 \times 3.5}

Hence, \sf{n =  \frac{55 \times 10 \times 35 \times 7 \times 8 \times 8 \times 10}{22 \times 7 \times 7 \times 2 \times 10 \times 10}  = 400}

Similar questions