Math, asked by alzainaanjum, 3 months ago

How many spheres of radius 4mm can each be made from melting a solid iron cone of

height 18cm and radius 8 cm​

Answers

Answered by Brâiñlynêha
56

Given :-

  • Radius of sphere. 4mm= 0.4cm

  • Height of cone = 18cm
  • radius of cone= 8cm

To find :-

the number of sphere melted to form a cone

Solution :-

let the number of sphere be n

As we know that if something is melted to form another thing then their volume remains same

\bullet\sf\ Volume\ of\ sphere = \dfrac{4}{3}\pi r^3\\ \\ \\ \bullet\sf\ Volume\ of\ cone = \dfrac{1}{3}\pi r^2h\\ \\ \\ \\ \implies\sf\ V.\ of\ sphere= V.\ of\ cone \\ \\ \\ \implies\sf\  n\times \dfrac{4}{\cancel{3}}\cancel{\pi} \bigg(\dfrac{4}{10}\bigg)^3= \dfrac{1}{\cancel{3}}\cancel{\pi} \times (8)^2\times 18\\ \\ \\ \implies\sf\ \dfrac{64\times 4\times n}{1000}= 64\times 18\\ \\ \\ \implies\sf \ n= \dfrac{\cancel{64}\times 18\times \cancel{1000}}{\cancel{64}\times \cancel{4}}\\ \\ \\ \implies\sf\ n= 18\times 250\\ \\ \\ \implies\boxed{\sf n= 4500}

Answered by Anonymous
35

Answer:

Given :-

  • A radius of sphere is 4 mm can be each be made from melting a solid iron cone of height 18 cm and radius is 8 cm.

To Find :-

  • How many spheres can be required.

Formula Used :-

{\red{\boxed{\large{\bold{Volume\: of\: Sphere =\: \dfrac{4}{3}{\pi}{r}^{3}}}}}}

{\red{\boxed{\large{\bold{Volume\: of\: Cone =\: \dfrac{1}{3}{\pi}{r}^{2}h}}}}}

where,

  • r = Radius
  • h = Height

Solution :-

First we have to convert mm to cm,

As we know that,

1 mm = 1/10

Then,

Radius of sphere = 4 mm

Radius of sphere = \sf \dfrac{4}{10}

\sf\bold{Radius\: of\: sphere =\: 0.4\: cm}

Let, the number of sphere be x

Given :

  • Radius of sphere = 0.4 cm
  • Radius of cone = 8 cm
  • Height of cone = 18 cm

According to the question by using the formula we get,

 \\ \sf \implies x \times \dfrac{4}{\cancel{3}} \times \cancel{\dfrac{22}{7}} \times {(0.4)}^{3} =\: \dfrac{1}{\cancel{3}} \times \cancel{\dfrac{22}{7}} \times {(8)}^{2} \times 18\\

 \\ \sf \implies x \times 4 \times 0.064 =\: 64 \times 18\\

 \\ \sf \implies x =\: \dfrac{\cancel{64} \times 18 \times 1000}{4 \times \cancel{64}}\\

 \\ \sf \implies x =\: \dfrac{18 \times 1000}{4}\\

 \\ \sf \implies x =\: \dfrac{\cancel{18000}}{\cancel{4}}\\

 \\ \sf \implies \bold{\purple{x =\: 4500}}\\

{\underline{\boxed{\small{\bf{\therefore 4500\: of\: spheres\: are\: been\: required .}}}}}

Similar questions