Math, asked by PubG121, 10 months ago

How many term of ap 63, 60, 57 must be taken so that sum is 693?

Answers

Answered by Anonymous
9

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R}}}}

\huge\mathcal\green{n=21}

\huge\mathfrak\orange{(or)}

\huge\mathcal\green{n=22}

\huge\blue{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{EXPLANATION:}}}}}}}

{\bf{\red{Given terms are in AP}}}

{\bf{\red{AP:63,60,57}}}

{\bf{\red{a=63,d=60-63=-3}}}

{\bf{\red{we know that, }}}

{\bf{\red{Sn=n/2(2a+(n-1)d)}}}

{\bf{\red{693=n/2(2(63)+(n-1)(-3)}}}

{\bf{\red{693=126n-3n^2+3n/2}}}

{\bf{\red{693x2=-3n^2+129n}}}

{\bf{\red{=>3n^2-129n+1386=0}}}

{\bf{\red{=>3n^2-66n-63n+1386=0}}}

{\bf{\red{=>3n(n-22)-63(n-22)=0}}}

{\bf{\red{=>(3n-63)(n-22)=0}}}

{\bf{\red{=>3n-63=0 (or) =>n-22=0}}}

{\bf{\red{=>n=63/3 (or) =>n=22}}}

{\bf{\red{=>n=21 (or) =>n=22}}}

Answered by vikram991
18

\huge{\bf{\underline{\purple{Solution :}}}}

Given,

  • First term (a) = 63
  • Common Difference (d)  = 60 - 63 = -3

To Find,

  • 63 , 60 , 57 ....?.. = 693

Solution,

⇒Let the number of terms be n

\bold{s_{n} = 693}

We know that :

\boxed{\bold{s_{n} = \frac{n}{2} [ 2a + (n - 1) d}}

Here ,

  • a is the first term .
  • n is the number of terms .
  • d is the difference between two Consecutive terms

\implies \bold{693 = \frac{n}{2}  [2 \times  63 + (n - 1) -3]}

\implies \bold{ 693 = \frac{n}{2}  [126 - 3n + 3]}

\implies \bold{ 1386 = n(129 -  3n)}

\implies \bold{ 1386 = 129n - 3n}

\implies \bold{3n^{2} - 129n +1386 = 0}

\implies \bold{n^{2} - 43n + 462 = 0}

\implies \bold{n^{2} - 21n  - 22n  + 462 = 0}

\implies \bold{n(n - 21)  - 22(n - 21) = 0}

\implies \bold{(n - 21) (n - 22) = 0}

Therefore ,

\boxed{\bold{ number \  of \ terms  = 21 \ or \  22}}

\rule{200}2

Similar questions